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Bezier splines, B-Splines, and NURBS

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.
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History

● Continuity (smooth curves) can  
be essential to the perception of 
quality.  

● The automotive industry wanted 
to design cars which were 
aerodynamic, but also visibly of 
high quality.

● Bezier (Renault) and de 
Casteljau (Citroen) invented 
Bezier curves in the 1960s.  de 
Boor (GM) generalized them to 
B-splines.
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History
The term spline comes from 
the shipbuilding industry: long, 
thin strips of wood or metal 
would be bent and held in 
place by heavy ‘ducks’, lead 
weights which acted as control 
points of the curve.
Wooden splines can be 
described by Cn-continuous 
Hermite polynomials which 
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm 

4

Beziers—a quick review
● A Bezier cubic is a function P(t) defined 

by four control points:
● P1 and P4 are the endpoints of the curve
● P2 and P3 define the other two corners of the 

bounding polygon.
● The curve fits entirely within the convex 

hull of P1...P4.
● A degree-d Bezier is infinitely continuous 

throughout its interior.  However, when 
joining two Beziers, careful placement of 
the control points is required to ensure 
continuity.

P1

P2 P3

P4

Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4
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Beziers

Cubics are just one example of Bezier splines:
● Linear: P(t) = (1-t)P1 + tP2

● Quadratic: P(t) = (1-t)2P1 + 2t(1-t)P2 + t2P3

● Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

...

General:
“n choose i” = n! / i!(n-i)!
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http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm


Beziers

● You can describe Beziers as nested linear interpolations:
● The linear Bezier is a linear interpolation between two points:

P(t) = (1-t) (P1) + (t) (P2)
● The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) ((1-t)P1+tP2) + (t) ((1-t)P2+tP3)

● The cubic is a linear interpolation between linear interpolations between 
linear interpolations… etc.

● Another way to see Beziers is as a weighted average 
between the control points.

P1

P2

P3
(1-t)P1+tP2

(1-t)P2+tP3

P(t)
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Bernstein polynomials

P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

● The four control functions are the four Bernstein 
polynomials for n=3.

• General form: 
•

• Bernstein polynomials in 0 ≤ t ≤ 1 always sum to 1: 
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Joining Bezier splines

● To join two Bezier splines with C0 
continuity, set P4=Q1.

● To join two Bezier splines with C1 
continuity, require C0 and make the tangent 
vectors equal: set P4=Q1 and P4-P3=Q2-Q1.

P4
Q1

Q2

P3
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What if we want to chain Beziers together?

Consider a chain of splines with 
many control points…

P = {P0, P1, P2, P3}
Q = {Q0, Q1, Q2, Q3}
R = {R0, R1, R2, R3}

…with C1 continuity…
P3=Q0, P2-P3=Q0-Q1
Q3=R0, Q2-Q3=R0-R1

We can parameterize this chain 
over t by saying that instead of 
going from 0 to 1, t moves 
smoothly through the intervals 
[0,1,2,3]

The curve C(t) would be:
    C(t) = P(t) • ((0 ≤ t <1) ? 1 : 0) +

Q(t-1) • ((1 ≤ t <2) ? 1 : 0) +
R(t-2) • ((2 ≤ t <3) ? 1 : 0) 

[0,1,2,3] is a type of knot vector.  
0, 1, 2, and 3 are the knots.

P4

Q1

Q2

P3

Q4

Q3

R2

R1
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NURBS

● NURBS (“Non-Uniform Rational B-
Splines”) are a generalization of Beziers.
● NU: Non-Uniform.  The knots in the knot vector 

are not required to be uniformly spaced.
● R: Rational.  The spline may be defined by 

rational polynomials (homogeneous coordinates.)
● BS: B-Spline.  A generalization of Bezier splines 

with controllable degree.
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B-Splines

● A Bezier cubic is a polynomial of degree three: it 
must have four control points, it must begin at 
the first and end at the fourth, and it assumes that 
all four control points are equally important.

● B-spline curves are a piecewise parameterization 
of a series of splines, that supports an arbitrary 
number of control points and lets you specify the 
degree of the polynomial which interpolates 
them.
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B-Splines
We’ll build our definition of a B-spline from:

● d, the degree of the curve
● k = d+1, called the parameter of the curve
● {P1…Pn}, a list of n control points
● [t1,…,tk+n], a knot vector of (k+n) parameter values

● d = k-1 is the degree of the curve, so k is the number of control 
points which influence a single interval.  
● Ex: a cubic (d=3) has four control points (k=4).

● There are k+n knots, and ti ≤ ti+1 for all ti.
● Each B-spline is C(k-2) continuous: continuity is degree minus one, 

so a k=3 curve has d=2 and is C1.
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B-Splines

● The equation for a B-spline curve is

● Ni,k(t) is the basis function of control point Pi for 
parameter k. Ni,k(t) is defined recursively:
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B-Splines

N1,1(t) N2,1(t) N3,1(t) N4,1(t) …

N1,2(t) N2,2(t) N3,2(t)

N1,3(t) N2,3(t)

N1,4(t)

…

…

…

t1 t2 t3 t4 t5 …
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B-Splines

N5,1(t)=1, 4 ≤ t < 5

N3,1(t)=1, 2 ≤ t < 3

N1,1(t)=1, 0 ≤ t < 1

N4,1(t)=1, 3 ≤ t < 4

N2,1(t)=1, 1 ≤ t < 2

Knot vector = {0,1,2,3,4,5}, k = 1 → d = 0 (degree = zero)

N1,1(t) N2,1(t) N3,1(t) N4,1(t)
0 1 1 2 2 3 3 4

N5,1(t)
54

t1 = 0.0
t2 = 1.0
t3 = 2.0
t4 = 3.0
t5 = 4.0
t6 = 5.0
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N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Knot vector = {0,1,2,3,4,5}, k = 2 → d = 1 (degree = one)

B-Splines
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N1,3(t) N2,3(t) N3,3(t)

Knot vector = {0,1,2,3,4,5}, k = 3 → d = 2 (degree = two)

B-Splines

18



N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Basis functions really sum to one (k=2)

=
The sum of 
the four basis 
functions is 
fully defined 
(sums to one) 
between 
t2 (t=1.0) and
t5 (t=4.0).
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N1,3(t) N2,3(t) N3,3(t)

Basis functions really sum to one (k=3)

+ +

=

The sum of 
the three 
functions is 
fully defined 
(sums to one) 
between
t3 (t=2.0) and
t4 (t=3.0).
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B-Splines

At k=2 the function is piecewise
linear, depends on P1,P2,P3,P4, and is 
fully defined on [t2, t5).

Each parameter-k basis function depends on k+1 knot values; Ni,k depends on ti 
through ti+k, inclusive.  So six knots → five discontinuous functions → four piecewise 
linear interpolations → three quadratics, interpolating three control points.  n=3 
control points, d=2 degree, k=3 parameter, n+k=6 knots.

At k=3 the function is piecewise
quadratic, depends on P1,P2,P3, and is 
fully defined on [t3, t4).

Knot vector = {0,1,2,3,4,5} 21

Non-Uniform B-Splines
● The knot vector {0,1,2,3,4,5} is uniform: 

ti+1-ti = ti+2-ti+1 ∀ti. 
● Varying the size of an interval changes the parametric-

space distribution of the weights assigned to the control 
functions.

● Repeating a knot value reduces the continuity of the 
curve in the affected span by one degree.

● Repeating a knot k times will lead to a control function 
being influenced only by that knot value; the spline will 
pass through the corresponding control point with C0 
continuity.
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Open vs Closed

● A knot vector which repeats its first and last knot 
values k times is called open, otherwise closed.
● Repeating the knots k times is the only way to 

force the curve to pass through the first or last 
control point.  

● Without this, the functions N1,k and Nn,k which 
weight P1 and Pn would still be ‘ramping up’ 
and not yet equal to one at the first and last ti.
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Open vs Closed

● Two examples you may recognize:
● k=3, n=3 control points, knots={0,0,0,1,1,1}
● k=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

Demo 24

http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html


Non-Uniform Rational B-Splines

● Repeating knot values is a clumsy way to 
control the curve’s proximity to the control 
point.
● We want to be able to slide the curve nearer or 

farther without losing continuity or introducing 
new control points.

● The solution: homogeneous coordinates.
● Associate a ‘weight’ with each control point: ωi.
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Non-Uniform Rational B-Splines

● Recall: [x, y, z, ω]H → [x / ω, y / ω, z / ω]
● Or: [x, y, z,1] → [xω, yω, zω, ω]H

● The control point 
Pi=(xi, yi, zi) 

becomes the homogeneous control point 
PiH =(xiωi, yiωi, ziωi)

● A NURBS in homogeneous coordinates is:
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Non-Uniform Rational B-Splines
● To convert from homogeneous coords to normal 

coordinates:
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Non-Uniform Rational B-Splines
● A piecewise rational curve is thus defined by:

with supporting rational basis functions:

This is essentially an average re-weighted by the ω’s.
● Such a curve can be made to pass arbitrarily far or near to 

a control point by changing the corresponding weight.
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Non-Uniform Rational B-Splines in action

Demo
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Tensor product

● The tensor product of two vectors is a 
matrix.

● Can also take the tensor of two polynomials.
● Each coefficient represents a piece of each of the two 

original expressions, to the cumulative polynomial 
represents both original polynomials completely.
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http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html


NURBS patches
● The tensor product of the polynomial 

coefficients of two NURBS splines is a 
matrix of polynomial coefficients.
● If curve A has parameter k and n control 

points and curve B has parameter j and m 
control points then A⊗B is an (n)x(m) 
matrix of polynomials of parameter max
(j,k).

● Multiply this matrix against an (n)x(m) 
matrix of control points and sum them all up 
and you’ve got a bivariate expression for 
a rectangular surface patch, in 3D

● This approach generalizes to triangles and 
arbitrary n-gons.
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NURBS patches aren’t the greatest

● NURBS patches are nxm, 
forming a mesh of quadrilaterals.
● What if you wanted triangles or 

pentagons?  
● A NURBS dodecahedron?

● What if you wanted vertices of valence other than 
four?

● NURBS expressions for triangular patches, 
and more, do exist; but they’re cumbersome.

38

Problems with NURBS patches
● Joining NURBS patches 

with Cn continuity 
across an edge is 
challenging.

● What happens to 
continuity at corners 
where the number of 
patches meeting isn’t 
exactly four?

● Animation is tricky: 
bending and blending 
are doable, but not easy.

Sadly, the world isn’t made up of shapes that 
can always be made from one smoothly-
deformed rectangular surface.
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● The solution: 
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding: 
we want guaranteed 
continuity, without 
having to build 
everything out of 
rectangular patches.
● Applications include 

CAD/CAM, 3D 
printing, museums and 
scanning, medicine, 
movies…

Geri’s Game, by Pixar (1997)

40

Subdivision surfaces

● Instead of ticking a parameter t along 
a parametric curve (or the parameters 
u,v over a parametric grid), 
subdivision surfaces repeatedly refine 
from a coarse set of control points.

● Each step of refinement adds new 
faces and vertices.

● The process converges to a smooth 
limit surface.

(Catmull-Clark in action) 41

Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision 
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two 
separate groups during 1978:
● Doo and Sabin found a biquadratic surface
● Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn 
[Butterfly subdivision], 1990) led to tools suitable 
for CAD/CAM and animation

42



Subdivision surfaces and the movies

● Pixar first demonstrated subdivision 
surfaces in 1997 with Geri’s Game.  
● Up until then they’d done everything in 

NURBS (Toy Story, A Bug’s Life.)
● From 1999 onwards everything they did was 

with subdivision surfaces (Toy Story 2, 
Monsters Inc, Finding Nemo...)

● Two decades on, it’s all heavily customized.
● It’s not clear what Dreamworks uses, 

but they have recent patents on 
subdivision techniques.
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Useful terms
● A scheme which describes a 1D curve (even if that curve is 

travelling in 3D space, or higher) is called univariate, referring 
to the fact that the limit curve can be approximated by a 
polynomial in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the 
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control 
points is called an interpolating scheme.

● A scheme which moves away from its 
original control points, converging to a 
limit curve or surface nearby, is called an 
approximating scheme.

Control surface for Geri’s head
44

How it works

● Example: Chaikin curve subdivision (2D)
● On each edge, insert new control points at ¼ and 

¾ between old vertices; delete the old points
● The limit curve is C1 everywhere (despite the poor 

figure.)
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Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will 
have twice as many control points as before.
Notice the different treatment of generating odd and 
even control points.
Borders (terminal points) are a special case.

←Even

←Odd
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Notation

Chaikin can be written in vector notation as:

47

Notation
● The standard notation compresses the scheme to a kernel:

● h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of 

the matrix form can be used to prove the continuity of the 
subdivision limit surface.
● The details of analysis are fascinating, lengthy, and sadly 

beyond the scope of this course
● The limit curve of Chaikin is a quadratic B-spline!
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Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel

49

Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A + 

(3/16) B + 
(3/16) C + 
(1/16) D

This replaces every old vertex 
with four new vertices.
The limit surface is biquadratic, 
C1 continuous everywhere.

P

A
B

C
D
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Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces

51

Catmull-Clark

● Catmull-Clark is a bivariate approximating 
scheme with kernel h=(1/8)[1,4,6,4,1].
● Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge
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Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule

53

Catmull-Clark in action
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Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
55

Extraordinary vertices
● Catmull-Clark and Doo-Sabin both 

operate on quadrilateral meshes.
● All faces have four boundary edges
● All vertices have four incident edges

● What happens when the mesh contains 
extraordinary vertices or faces?
● For many schemes, adaptive weights exist 

which can continue to guarantee at least 
some (non-zero) degree of continuity, but 
not always the best possible.

● CC replaces extraordinary faces with 
extraordinary vertices; DS replaces 
extraordinary vertices with extraordinary 
faces.

Detail of Doo-Sabin at cube 
corner

56

Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex 
rules generalized for 
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in 

the one-ring:
3/2n2

● Interleaved neighbors in 
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision 
Surfaces”, Ignacio Castaño, SIGGRAPH 2008 57

Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts

10

11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)
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Loop subdivision

Loop subdivision in action.  The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html
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Creases

Extensions exist for most schemes to support 
creases, vertices and edges flagged for partial or 
hybrid subdivision.

Still from “Volume 
Enclosed by 
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg, 
Ulrich Reif, Scott 
Schaefer, Joe Warren
http://vixra.
org/pdf/1406.
0060v1.pdf
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Continuous level of detail

For live applications (e.g. games) can compute 
continuous level of detail, e.g. as a function of 
distance:

Level 5 Level 5.2 Level 5.8 61

Direct evaluation of the limit surface

● In the 1999 paper Exact Evaluation Of Catmull-
Clark Subdivision Surfaces at Arbitrary Parameter 
Values, Jos Stam (now at Alias|Wavefront) 
describes a method for finding the exact final 
positions of the CC limit surface.
● His method is based on calculating the tangent and normal 

vectors to the limit surface and then shifting the control 
points out to their final positions.

● What’s particularly clever is that he gives exact evaluation 
at the extraordinary vertices.  (Non-trivial.)

62

Bounding boxes and convex hulls for 
subdivision surfaces
● The limit surface is (the weighted average of (the weighted 

averages of (the weighted averages of (repeat for eternity…)))) 
the original control points.

● This implies that for any scheme where all weights are positive 
and sum to one, the limit surface lies entirely within the 
convex hull of the original control points.

● For schemes with negative weights:
● Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter 

space of the absolute values of the weights.
● For a scheme with negative weights, L will exceed 1.
● Then the limit surface must lie within the convex hull of the 

original control points, expanded unilaterally by a ratio of (L-1).

63

Splitting a subdivision surface
Many algorithms rely on subdividing a surface and 
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the 
limit surface will change (see right)
● Need to include all control points from the previous 

generation, which influence the limit surface in this 
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 64

Ray/surface intersection
● To intersect a ray with a subdivision surface, 

we recursively split and split again, 
discarding all portions of the surface whose 
bounding boxes / convex hulls do not lie on 
the line of the ray.

● Any subsection of the surface which is ‘close 
enough’ to flat is treated as planar and the 
ray/plane intersection test is used.

● This is essentially a binary tree search for the 
nearest point of intersection.  
● You can optimize by sorting your list of 

subsurfaces in increasing order of distance 
from the origin of the ray.

65

Rendering subdivision surfaces
● The algorithm to render any subdivision surface is exactly the 

same as for Bezier curves:
“If the surface is simple enough, render it directly; 
otherwise split it and recurse.”

● One fast test for “simple enough” is, 
“Is the convex hull of the limit surface 
sufficiently close to flat?”

● Caveat: splitting a surface and 
subdividing one half but not the 
other can lead to tears where 
the different resolutions meet. →

66



Figure from Generic Mesh Renement on GPU,
Tamy Boubekeur & Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordeaux, France

Rendering subdivision surfaces on the GPU

● Subdivision algorithms have been ported to the 
GPU, often using geometry shaders.
● This subdivision can be done completely independently of 

geometry, imposing no demands on the CPU.
● Uses a complex blend 

of precalculated weights 
and shader logic

● Impressive effects
in use at id, Valve,
et al

67

Subdivision Schemes—A partial list
● Approximating

● Quadrilateral
● (1/2)[1,2,1]
● (1/4)[1,3,3,1] 

(Doo-Sabin)
● (1/8)[1,4,6,4,1] 

(Catmull-Clark)
● Mid-Edge

● Triangles
● Loop

● Interpolating
● Quadrilateral

● Kobbelt
● Triangle

● Butterfly
● “√3” Subdivision

Many more exist, some much 
more complex
This is a major topic of 
ongoing research

68
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Implicit surfaces 
Implicit surface modeling(1) is a 
way to produce very ‘organic’ or 
‘bulbous’ surfaces very quickly 
without subdivision or NURBS.
Uses of implicit surface 
modelling:
● Organic forms and nonlinear 

shapes
● Scientific modeling (electron 

orbitals, gravity shells in space, 
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force 
functions”, “blobby modeling”… 74

How it works

The user controls a set of control points, like 
NURBS; each point in space generates a field of 
force, which drops off as a function of distance 
from the point (like gravity weakening with 
distance.)

This 3D field of forces defines an implicit surface: the 
set of all the points in space where some 
mathematical function (in this case, the value of the 
force field) has a particular key value.

Force = 2

1

0.5

0.25 ...
75

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br2

● “Metaballs” – Jim Blinn
  a(1- 3r2 / b2) 0    ≤ r < b/3

F(r) =   (3a/2)(1-r/b)2 b/3 ≤ r < b
  0 b    ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions
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Comparison of force functions
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Discovering the surface

An octree is a recursive subdivision of 
space which “homes in” on the surface, 
from larger to finer detail.  
● An octree encloses a cubical volume in space.  

You evaluate the force function F(v) at each 
vertex v of the cube. 

● As the octree subdivides and splits into smaller 
octrees, only the octrees which contain some of 
the surface are processed; empty octrees are 
discarded.
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Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.
● If some corners are “hot” (above the force limit) and others are 

“cold” (below the force limit) then the implicit surface crosses the 
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more 
rings, which can be triangulated.  The normal is known from the 
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any 
child whose vertices are all hot or all cold.
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Polygonizing the surface

Recursive subdivision (on a quadtree):
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Polygonizing the surface
There are fifteen possible 
configurations (up to symmetry) of 
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in 
the polygonization which must be 
addressed separately.  ↓

Images courtesy of Diane Lingrand
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Polygonizing the surface

One way to overcome the ambiguities 
that arise from the cube is to 
decompose the cube into tretrahedra.

● A common decomposition is into 
five tetrahedra. →

● Caveat: need to flip every other 
cube.  (Why?)

● Can also split into six.
Another way is to do the subdivision 

itself on tetrahedra—no cubes at all.
Image from the Open Problem Garden
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Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose 

vertices are the midpoints of the edges which lie 
between hot and cold vertices.

● The vertices of the implicit surface can be more 
closely approximated by points linearly interpolated 
along the edges of the cube by the weights of the 
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)
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Implicit surfaces -- demo
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http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
http://garden.irmacs.sfu.ca/?q=op/simplexity_of_the_cube


Marching cubes
An alternative to octrees if you only want 
to compute the final stage is the marching 
cubes algorithm (Lorensen & Cline, 1985):

● Fire a ray from any point known to be 
inside the surface.

● Using Newton’s method or binary search, 
find where the ray crosses the surface. 

● Newton: derivative estimated from discrete 
local sampling

● There may be many crossings
● Drop a cube around the intersection point: 

it will have some vertices hot, some cold.
● While there exists a cube which has at least 

one hot vertex and at least one cold vertex 
on a side and no neighbor on that side, 
create a neighboring cube on that side.  
Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in 
1984, modeling a human spine.
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Voxels and volume rendering
A voxel (“volume pixel”) is a cube in space 
with a given color; like a 3D pixel.
● Voxels are often used for medical imaging, 

terrain, scanning and model reconstruction, 
and other very large datasets.

● Voxels usually contain color but could contain 
other data as well—flow rates (in medical 
imaging), density functions (analogous to 
implicit surface modeling), lighting data, 
surface normals, 3D texture coordinates, etc.

● Often the goal is to render the voxel data 
directly, not to polygonize it.
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Voxels for deformable geometry

Voxels are uniquely well-
suited to large-scale, 
dynamically deformable 
environments.
Geometry stored in a 
recursive data structure 
(“chunks”, arrays of cubes 
containing arrays of cubes) 
can be locally edited in real 
time.

Fan art from the game Minecraft 
(from Deviantart.com, Wallchan.com) 87

Volume ray casting
If speed can be sacrificed for accuracy, 
render voxels with volume ray casting:
● Fire a ray through each pixel;
● Sample the voxel data along the ray, 

computing the weighted average 
(trilinear filter) of the contributions to 
the ray of each voxel it passes through;

● Compute surface gradient from of each 
voxel from local sampling; generate 
surface normals; compute lighting with 
the standard lighting equation;

● ‘Paint’ the ray from back to front, 
occluding more distant voxels with 
nearer voxels; this is the Painter’s 
Algorithm for hidden-surface removal.

Top: the steps of volume rendering
Bottom: a volume ray-cast skull.
Images from wikipedia. 88

Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit, 

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between 

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere 
between eight (in 3d) voxel centers.
Weight the color of the sample by the 
inverse of its distance from the center 
of each voxel.
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The Voronoi diagram(2) of a set of 
points Pi divides space into 
‘cells’, where each cell Ci 
contains the points in space 
closer to Pi than any other Pj.

The Delaunay triangulation is the 
dual of the Voronoi diagram: a 
graph in which an edge 
connects every Pi which share a 
common edge in the Voronoi 
diagram.

A Voronoi diagram (dotted lines) and its 
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet 
domain”, “Thiessen polygons”, “plesiohedra”, 
“fundamental areas”, “domain of action”…

Voronoi diagrams
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Delaunay triangulation applet by Paul Chew ©1997—2007 
http://www.cs.cornell.edu/home/chew/Delaunay.html 

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal 
definition of a Voronoi cell C(S,pi) is
   C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points 
of the diagram.

Where three or more boundary edges 
meet is a Voronoi point.  Each Voronoi 
point is at the center of a circle (or 
sphere, or hypersphere…) which passes 
through the associated generating points 
and which is guaranteed to be empty of 
all other generating points.
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Delaunay triangulations and equi-angularity

The equiangularity of any 
triangulation of a set of points 
S is a sorted list of the angles 
(α1… α3t) of the triangles.
● A triangulation is said to be 

equiangular if it possesses 
lexicographically largest 
equiangularity amongst all 
possible triangulations of S.

● The Delaunay triangulation 
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and empty circles

Voronoi triangulations have 
the empty circle property: in 
any Voronoi triangulation of S, 
no point of S will lie inside the 
circle circumscribing any three 
points sharing a triangle in the 
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227
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Delaunay triangulations and convex hulls
The border of the Delaunay 
triangulation of a set of points is 
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a 
set of points in Rn is the planar 
projection of a convex hull in 
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft 

the points upwards, onto a 
parabola in 3D (P’i={x,y,x2+y2}
i). The resulting polyhedral 
mesh will still be convex in 3D.
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Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points 
within the surface equidistant to the two or more 
nearest points on the surface.
● This can be used to extract a skeleton of the 

surface, for (for example) path-planning 
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June 
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang 

Approximating the Medial Axis from the Voronoi 
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha       
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Finding the Voronoi diagram
There are four general classes of 
algorithm for computing the Delaunay 
triangulation:
● Divide-and-conquer
● Sweep plane

○ Ex: Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing 

triangulation until it becomes 
Delaunay Fortune’s Algorithm for the plane-sweep construction of the 

Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip its 
inner edge and it becomes Delaunay.  (Image from Wikipedia.)
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http://www.cs.cornell.edu/home/chew/Delaunay.html
http://www.cs.cornell.edu/home/chew/Delaunay.html
http://www.cs.cornell.edu/home/chew/Delaunay.html
http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan
http://www.cs.unc.edu/~geom/voronoi/vplan


Fortune’s algorithm
1. The algorithm maintains a sweep line and a 

“beach line”, a set of parabolas advancing 
left-to-right from each point.  The beach line 
is the union of these parabolas.
a. The intersection of each pair of 

parabolas is an edge of the voronoi 
diagram

b. All data to the left of the beach line is 
“known”; nothing to the right can 
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the 

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s 

algorithm is O(n log n)
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GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be 

rendered on the GPU, 
search all points for the 
nearest point

Elegant:
● Render each point as a 

discrete cone in 
isometric projection, let 
z-buffering sort it out
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Voronoi cells in 3D

99

Silvan Oesterle, Michael Knauss 

Particle systems
Particle systems are a monte-carlo style 
technique which uses thousands (or 
millions) or tiny graphical artefacts to 
create large-scale visual effects.

Particle systems are used for hair, fire, 
smoke, water, spores, clouds, explosions, 
energy glows, in-game special effects 
and much more.

The basic idea:
“If lots of little things all do something 
the same way, our brains will see the 
thing they do and not the dots doing it.”

Fallout 4 
(Bethesda)

Command and 
Conquer 3 
(Electronic Arts)
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History of particle systems

● 1962: Ships explode into 
pixel clouds in 
“Spacewar!”, the 2nd 
video game ever.

● 1978: Ships explode into 
broken lines in 
“Asteroid”.

● 1982: The Genesis Effect 
in “Star Trek II: The 
Wrath of Khan”.

Fanboy note: You can play the original Spacewar at 
http://spacewar.oversigma.com/ -- the actual original 
game,running in a PDP-1 emulated in a Java applet. 101

Particle systems

How it works:
● Particles are generated an emitting source

● Emitter position and orientation are specified discretely;
● Emitter rate, direction, flow, etc are often specified as a 

bounded random range
● This gives a Monte Carlo integration-style effect

● Time ticks; at each tick, particles move.
● New particles are generated; expired particles are 

deleted
● Forces (gravity, wind, etc) accelerate each particle
● Acceleration changes velocity
● Velocity changes position

● Particles are textured and rendered.

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia) 102

http://spacewar.oversigma.com/


Particle systems—implementations
Closed-form function:
● Represent every particle as a 

parametric equation; store only 
the initial position p0, initial 
velocity v0, then apply fixed 
acceleration (such as gravity g.)
● p(t)=p0+v0t+½gt2

● No storage of state → small 
memory footprint

● Very limited possibility of 
interaction

● Best for fire, projectiles, etc—
non-responsive particles.

Discrete integration:
● Update every particle separately; 

this can be expressed as a loop 
over a list, or as a mutation of a 
texture (if using a GPU), or as a 
massive matrix multiplication 
operation (if using CUDA)

NVIDIA
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Particle systems—rendering
Can render particles as points, textured polys, or 
primitive geometry
● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make pretty 

good fire, smoke, etc
Transitioning one particle type to another 
creates realistic interactive effects
● Ex: a ‘rain’ particle becomes an emitter for 

‘splash’ particles on impact
Particles can be the force sources for a 
blobby model implicit surface
● Nice for simulating liquids

nvidia

Hagit Schechter
http://www.cs.ubc.
ca/~hagitsch/Research/
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“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)
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Querying your geometry

Given a polygonal model, how might you 
find…
● the normal at each vertex?
● the curvature at each vertex?
● the convex hull?
● the bounding box?
● the center of mass?
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Querying your geometry

“Here’s some geometry.  What can we know?”
● A recurring theme here will be,

“The polygons are not the shape: the polygons 
approximate the surface of the shape.”

● Some questions from we could ask (e.g. ray-
polygon intersection) are about the actual 
polygons.

● But other questions, like the normal at a vertex, are 
really about approximating the underlying surface 
as closely as possible.
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Terminology

● We’ll be focusing on discrete (as 
opposed to continuous) representation 
of geometry; i.e., polygon meshes

● Many rendering systems limit themselves 
to triangle meshes

● Many require that the mesh be manifold
● In a closed manifold polygon mesh:

● Exactly two triangles meet at each edge
● The faces meeting at each vertex belong to 

a single, connected loop of faces
● In a manifold with boundary:

● At most two triangles meet at each edge
● The faces meeting at each vertex belong to 

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s 
Fundamentals of Computer Graphics, pp. 262-263
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Terminology

● We say that a surface is oriented if:
a. the vertices of every face are stored in a fixed 

order
b. if vertices i, j appear in both faces f1 and f2, then 

the vertices appear in order i, j in one and j, i in 
the other

● We say that a surface is embedded if, 
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space 

with any other vertex, edge or face except where 
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate 
3-space into two parts: a bounded interior 
and an unbounded exterior.

A cube with “anti-clockwise” 
oriented faces

Klein bottle: 
not an 
embedded 
surface.

Also, terrible 
for holding 
drinks.

This slide draws much inspiration from Hughes and Van Dam’s 
Computer Graphics: Principles and Practice, pp. 637-642
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Normal at a vertex

Expressed as a limit, 
The normal of surface S at point P is the limit of the 
cross-product between two (non-collinear) vectors 
from P to the set of points in S at a distance r from P 
as r goes to zero.  [Excluding orientation.]
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Normal at a vertex

Using the limit definition, is the ‘normal’ to a 
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a 

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept 

out on a unit sphere between the two normals of the 
two faces.

● The ‘normal’ to the surface at a vertex is a space swept 
out on the unit sphere between the normals of all of the 
adjacent faces.
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Finding the normal at a vertex

Method 1: Take the 
average of the normals 
of surrounding polygons

Problem: splitting one 
adjacent face into 10,000 
shards would skew the 
average
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Finding the normal at a vertex

Method 2: Take the 
weighted average of the 
normals of surrounding 
polygons, weighted by the 
area of each face
● 2a: Weight each face 

normal by the area of the 
face divided by the total 
number of vertices in the 
face

Problem: Introducing new edges 
into a neighboring face (and 
thereby reducing its area) should 
not change the normal.
Should making a face larger 
affect the normal to the surface 
near its corners?
● Argument for yes: If the vertices 

interpolate the ‘true’ surface, 
then stretching the surface at a 
distance could still change the 
local normals.
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Finding the normal at a vertex

Method 3: Take the 
weighted average of the 
normals of surrounding 
polygons, weighted by each 
polygon’s face angle at the 
vertex

Face angle: the angle α 
formed at the vertex v by 
the vectors to the next and 
previous vertices in the 
face F

Note: In this equation, arccos 
implies a convex polygon. Why?

NF
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Gaussian curvature on smooth surfaces

Informally speaking, the 
curvature of a surface 
expresses “how flat the 
surface isn’t”.
● One can measure the 

directions in which the 
surface is curving most; these 
are the directions of principal 
curvature, k1 and k2.

● The product of k1 and k2 is the 
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia
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Gaussian curvature on smooth surfaces

Formally, the Gaussian 
curvature of a region on a 
surface is the ratio between 
the area of the surface of the 
unit sphere swept out by the 
normals of that region and 
the area of the region itself.
The Gaussian curvature of a 
point is the limit of this ratio 
as the region tends to zero 
area.

Area on the surface
Area of the projections 
of the normals on the 
unit sphere

anus
as

0 on a plane

anus
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)
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Gaussian curvature on discrete surfaces

On a discrete surface, normals do not vary 
smoothly: the normal to a face is constant on the 
face, and at edges and vertices the normal is—
strictly speaking—undefined. 
● Normals change instantaneously (as one's point of view 

travels across an edge from one face to another) or not at all 
(as one's point of view travels within a face.) 

The Gaussian curvature of the surface of any 
polyhedral mesh is zero everywhere except at the 
vertices, where it is infinite.
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Angle deficit – a better solution for 
measuring discrete curvature

The angle deficit AD(v) of a vertex v is defined 
to be two π minus the sum of the face angles of 
the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚
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Angle deficit

High angle deficit Low angle deficit Negative angle deficit
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Hmmm…

Angle deficit
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Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed 
surface is
...“a topologically invariant property of a 

surface defined as the largest number 
of nonintersecting simple closed 
curves that can be drawn on the 
surface without separating it.” 

--mathworld.com
● Informally, it’s the number of 

coffee cup handles in the surface.

Genus 0

Genus 1
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Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border 
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:
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Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces
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The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that 
on a surface S with Euler characteristic χ, the sum of 
the angle deficits of the vertices is 2πχ:

Cube: 
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron: 
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ
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Convex hull

The convex hull of a set of points is the unique surface 
of least area which contains the set.
● If a set of infinite half-planes have a finite non-empty 

intersection, then the surface of their intersection is a convex 
polyhedron.

● If a polyhedron is convex then for any two faces A and B in 
the polyhedron, all points in B which are not in A lie to the 
same side of the plane containing A.

Every point on a convex hull has non-negative angle 
deficit.
The faces of a convex hull are always convex.
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Finding the convex hull of a set of points

Method 1: For every 
triple of points in the set, 
define a plane P.  If all 
other points in the set lie 
to the same side of P 
(dot-product test) then 
add P to the hull; else 
discard.

Problem 1: this works but 
it’s O(n4).
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Finding the convex hull of a set of points

Method 2:
● Initialize C with a tetrahedron from any four non-colinear points in 

the set.  Orient the faces of C by taking the dot product of the center 
of each face with the average of the vertices of C.

● For each vertex v, 
● For each face f of C, 

● If the dot product of the normal of f with the vector from the center of f to v 
is positive then v is ‘above’ f.  

● If v is above f then delete f and update a (sorted) list of all new border 
vertices.

● Create a new triangular face from v to each pair of border vertices.

Problem 2:
This is O(n2) at best.
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Finding the convex hull of a set of points

Method 3:
The exterior boundary of the union of the 
cells of the Delaunay triangulation of a set 
of points is its convex hull.

Algorithm:
● Find the Voronoi diagram of your point set
● Compute the Delaunay triangulation (2D) or 

tetrahedralization (3D)
● Delete all faces of the simplices which aren’t on 

the exterior border

The exterior border of the 
Delaunay triangulation is 
the convex hull of the point 
set.

132



Testing if a point is inside a convex hull

We can generalize Method 2 to test whether a 
point is inside any convex polyhedron.
● For each face, test the dot product of the normal of 

the face with a vector from the face to the point.  If 
the dot is ever positive, the point lies outside.

● The same logic applies if you’re storing normals at 
vertices.
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Centroids

The centroid of a surface is the center 
of mass of the volume enclosed by the 
surface.
This is not the same as the center of the 
bounding box.
● We’ll assume that the ‘material’ within the 

surface is of uniform density. 
● We’ll also assume that we have a closed 

surface (without border.)
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Centroids

Method 1: Take the 
average of all vertices.

C = (Σ{v}(v)) / ||{v}||

Problem 1: as with 
normals, an area of 
bizarre density would 
skew the average.

True centroid Average of vertices

Center of bounding box

~50 verts ~500 verts
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Centroids

Method 2: Take the average 
of the centers of the faces of 
the surface, weighting each 
by the area of the face.
● This method works well for 

convex polyhedra.

Problem 2: This is vulnerable 
to dense ‘wrinkles’ of many 
polygons packed into a small 
volume.

The average adult human brain has a surface area of approximately 2,500 cm2, a volume of roughly 1200 cm3, and weighs about 1400g.  For 
comparison, a sphere of similar volume would have a surface area of  546 cm2.  Brain image courtesy of Moprhonix.com.
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Centroids
Method 3a: Use “Monte Carlo” 
integration.  Find the bounding 
box of the surface and then choose 
billions of points at random inside 
the box; take the average of all 
those points which fall inside the 
surface.

Problem 3a: Testing for ‘inside’ is 
time-consuming (although it can 
be accelerated; try BSP trees.)  
Also, this lacks precision.  And, 
frankly, finesse.

Method 3b: Decompose the 
polyhedron into convex polyhedra, 
then use method 2 to find the center 
of each.  Average the centers, 
weighting each point by the volume 
of its convex polyhedron.

Problem 3b: Convex decomposition 
is solved, but it’s not trivial.
● Convex regions decompose rapidly 

to tetrahedra.
● Nonconvex regions can be tricky: 

tetrahedra may cross.
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3D technologies today
Java

● Common, re-usable language; well-
designed

● Steadily increasing popularity in 
industry

● Weak but evolving 3D support
C++

● Long-established language
● Long history with OpenGL
● Long history with DirectX
● Losing popularity in some fields 

(finance, web) but still strong in 
others (games, medical)

JavaScript
● WebGL is surprisingly popular

OpenGL
● Open source with many 

implementations
● Well-designed, old, and still evolving
● Fairly cross-platform

DirectX/Direct3d (Microsoft)
● Microsoft™ only
● Dependable updates

Mantle (AMD)
● Targeted at game developers
● AMD-specific

Higher-level commercial libraries
● RenderMan
● AutoDesk / SoftImage
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OpenGL
OpenGL is…
● Hardware-independent
● Operating system independent
● Vendor neutral

On many platforms
● Great support on Windows, Mac, 

linux, etc
● Support for mobile devices with 

OpenGL ES
● Android, iOS (but not 

Windows Phone)
● Android Wear watches!

● Web support with WebGL

A state-based renderer
● many settings are configured 

before passing in data; rendering 
behavior is modified by existing 
state

Accelerates common 3D graphics 
operations
● Clipping (for primitives)
● Hidden-surface removal (Z-

buffering)
● Texturing, alpha blending 

NURBS and other advanced 
primitives (GLUT)
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OpenGL in Java
● JOGL:  “Java bindings 

for OpenGL”
http://jogamp.org/jogl/
JOGL apps can be deployed as 
applications or as applets, making it 
suitable for educational web demos 
and cross-platform applications.
● If the user has installed the latest 

Java, of course.
● And if you jump through Oracle’

s authentication hoops.
● And… let’s be honest, 1998 

called, it wants its applets back.

JOGL shaders in action.  
Image from Wikipedia

● LWJGL: “Lightweight 
Java Games Library”

http://www.lwjgl.org/
LWJGL is targeted at game 
developers, so it’s got a really solid 
threading model and good support for 
new input methods like joysticks, 
gaming mice,
and the Oculus
Rift.
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The CPU (your processor and friend) delivers data to the GPU 
(Graphical Processing Unit).
● The GPU takes in streams of vertices, colors, texture coordinates and 

other data; constructs polygons and other primitives; then uses 
shaders to draw the primitives to the screen pixel-by-pixel.

● The GPU processes the vertices according to the state set by the 
CPU; for example, “every trio of vertices describes a triangle”.

This process is called the rendering pipeline.  Implementing the rendering 
pipeline is a joint effort between you and the GPU.

You’ll write shaders in the OpenGL shader language, GLSL.
You’ll write vertex and fragment shaders.  (And maybe others.)

OpenGL architecture
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The OpenGL rendering pipeline

An OpenGL application assembles 
sets of primitives, transforms and 
image data, which it passes to 
OpenGL’s GLSL shaders.
● Vertex shaders process every vertex 

in the primitives, computing info 
such as position of each one.

● Fragment shaders compute the 
color of every fragment of every 
pixel covered by every primitive.

Primitives and image data

Alpha, stencil, depth tests
Framebuffer blending

Transform and lighting

Primitive assembly

Clipping

Texturing

Fog, antialiasing

Application

Vertex

Geometry

Fragment

Framebuffer

The OpenGL rendering pipeline 
(simplified view)
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Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and ATI (bottom)
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What are we targeting?

OpenGL shaders give the 
user control over each 
vertex and each fragment 
(each pixel or partial 
pixel) interpolated 
between vertices.
After vertices are processed, polygons are rasterized.  During 
rasterization, values like position, color, depth, and others are 
interpolated across the polygon.  The interpolated values are 
passed to each pixel fragment.
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Think parallel

Shaders are compiled from within your code
● They used to be written in assembler
● Today they’re written in high-level languages

They execute on the GPU
GPUs typically have multiple processing units
That means that multiple shaders execute in parallel
● We’re moving away from the purely-linear flow of early “C” 

programming models
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Shader example one – ambient lighting
#version 330

uniform mat4 mvp;

in vec4 vPosition;

void main() {
  gl_Position = mvp * 
vPosition;

}

#version 330

out vec4 fragmentColor;

void main() {
  fragmentColor =
      vec4(0.2, 0.6, 0.8, 1);
}

// Vertex Shader // Fragment Shader
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GLSL

Notice the C-style syntax
void main() { … }

The vertex shader uses two inputs, one four-element vec4 
and one four-by-four mat4 matrix; and one standard 
output, gl_Position.

The line
gl_Position = mvp * gl_Vertex;

applies our model-view-projection matrix to calculate the 
correct vertex position in perspective coordinates.
This fragment shader implements the most basic ambient 

lighting by setting its one output, col, to a fixed value.
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GLSL

The language design in GLSL is strongly based on 
ANSI C, with some C++ added.

● There is a preprocessor--#define, etc
● Basic types: int, float, bool

● No double-precision float
● Vectors and matrices are standard: vec2, mat2 = 2x2; vec3, 

mat3 = 3x3; vec4, mat4 = 4x4
● Texture samplers: sampler1D, sampler2D, etc are used to 

sample multidemensional textures
● New instances are built with constructors, a la C++
● Functions can be declared before they are defined, and 

operator overloading is supported.
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GLSL

Some differences from C/C++:
● No pointers, strings, chars; no unions, enums; no bytes, shorts, longs; 

no unsigned.  No switch() statements.
● There is no implicit casting (type promotion):

float foo = 1;
fails because you can’t implicitly cast int to float.

● Explicit type casts are done by constructor:
vec3 foo = vec3(1.0, 2.0, 3.0);
vec2 bar = vec2(foo);  // Drops foo.z

Function parameters are labeled as in, out, or uniform.
● Functions are called by value-return, meaning that values are copied 

into and out of parameters at the start and end of calls.
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Program

OpenGL / GLSL API - setup
To install and use a shader in OpenGL:
1. Create one or more empty shader objects with 

glCreateShader.
2. Load source code, in text, into the shader with 

glShaderSource.
3. Compile the shader with 

glCompileShader.
4. Create an empty program object with 

glCreateProgram.
5. Bind your shaders to the program with 

glAttachShader.
6. Link the program (ahh, the ghost of C!) with 

glLinkProgram.
7. Activate your program with 

glUseProgram.

Vertex
shader

Fragment
shader

Compiler

OpenGL

Linker
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Shader gallery II

Above: Kevin Boulanger (PhD thesis, 
“Real-Time Realistic Rendering of Nature 
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)
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What will you have to write?

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU
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1. OpenGL / GLSL API - variables

GLSL shaders use named parameters which can be looked up 
from OpenGL.

uniform mat4 modelToScreen;

in vec4 vPosition;

...

The OpenGL API looks up the location integers of these 
parameters and uses the location as an address:

int attributeId = glGetAttribLocation(program, 
"vPosition");

glEnableVertexAttribArray(attributeId);

glVertexAttribPointer(attributeId, ...);

GLSL

OpenGL
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Passing geometry to OpenGL

Vertex buffer objects store arrays of vertex data--
positional or descriptive.  With a vertex buffer 
object (“VBO”) you can compute all vertices at 
once, pack them into a VBO, and pass them to 
OpenGL en masse to let the GPU processes all 
the vertices together.

To group different kinds of vertex data together, 
you can serialize your buffers into a single 
VBO, or you bind and attach them to a Vertex 
Array Objects.  Each vertex array object 
(“VAO”) can contain multiple VBOs. 

Although not required, VAOs help you to organize 
and isolate the data in your VBOs.

Vertex Array 
Object

Vertex Buffer 
(positions)

Vertex Buffer 
(colors)

Vertex Buffer 
(normals)

Vertex Buffer 
(texture info)
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Vertex arrays contain vertex buffers

First, we allocate a vertex array:
  private void createAndBindVertexBuffer() {

    int vertexArrayId = glGenVertexArrays();

    glBindVertexArray(vertexArrayId);

  }

Then we fill attach a vertex buffer with vertex coordinates:
  private void addVertexBuffer(String name, FloatBuffer data) {

    int BufferId = glGenBuffers();

    glBindBuffer(GL_ARRAY_BUFFER, bufferId);

    glBufferData(GL_ARRAY_BUFFER, data, GL_STATIC_DRAW);

    int attributeId = glGetAttribLocation(program, name);

    glEnableVertexAttribArray(attributeId);

    glVertexAttribPointer(attributeId, 3, GL11.GL_FLOAT, false, 0, 0);

  }
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Vertex buffers contain vertex data

In Java, vertex data is typically packed into a FloatBuffer:
static final float[][] CORNERS = {

  {-0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f,-0.8f}, {-0.8f, 0.8f,-0.8f},

  {-0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f,-0.8f}, {-0.8f,-0.8f,-0.8f},

};

static final int[] INDICES = { 0, 1, 2, 3, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 4 };

private void drawCube() {

  FloatBuffer vertices = Buffers.newDirectFloatBuffer(INDICES.length * 3);

  for (int index : INDICES) { vertices.put(CORNERS[index]); }

  vertices.rewind();

  fillCurrentVertexBuffer(“vPosition”, vertices);

  // ...

  glDrawArrays(GL_LINE_STRIP, 0, INDICES.length);

}

...and it’s boring, because we have no 3D.
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Binding multiple buffers in a VAO

Need more info?  We can pass more than just coordinate data--we can create as 
many buffer objects as we want for different types of per-vertex data.

To bind two arrays of floats together, we build a vertex array object as before:
int vertexArrayId = glGenVertexArrays();

glBindVertexArray(vertexArrayId);

We bind a vertex buffer object for coordinate data, then another for normals:
addVertexBuffer(“vPosition”, vertices);

addVertexBuffer(“vNormal”, normals);

Later, to render, we’ll unbind the buffers and work only with the vertex array:
glBindBuffer(GL_ARRAY_BUFFER, 0);

glDrawArrays(GL_LINE_STRIP, 0, INDICES.length);
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Memory management:
Lifespan of an OpenGL object

Most objects in OpenGL are created and deleted explicitly.  Because these entities 
live in the GPU, they’re outside the scope of Java’s garbage collection.
The typical creation and deletion of an OpenGL object look like this:

int createAndBindVBO() {

  int name = glGenBuffers();
  glBindBuffer(GL_ARRAY_BUFFER, name);
  return name;
}

// Work with your object

void deleteVBO(int vboName) {
  glDeleteBuffers(vboName);
}
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2. Getting some perspective

To add 3D perspective to our flat model, we face three 
challenges:

● Compute a 3D perspective matrix
● Pass it to OpenGL, and on to the GPU
● Apply it to each vertex

To do so we’re going to need to apply our perspective matrix 
in the shader, which means we’ll need to build our own 4x4 
perspective transform.

161

4x4 perspective matrix transform

Every OpenGL package provides utilities to build a 
perspective matrix.  You’ll usually find a method named 
something like glGetFrustum() which will assemble a 4x4 
grid of floats suitable for passing to OpenGL.

Or you can build your own:
α: Field of view, typically 
50°

ar: Aspect ratio of width 
over height

NearZ: Near clip plane

FarZ: Far clip plane

P =
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Passing uniform data to GLSL

The method glGetUniformLocation() will look up the 
location of a uniform parameter in a shader program.
(This is analogous to the attribute lookup seen earlier.)

  private void updateM4x4(String name, M4x4 T) {

    int uniform = glGetUniformLocation(program, name);

    if (uniform != -1) {

      glUniformMatrix4(uniform, false, T.asFloats());

    }

  }
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Reading uniform data in GLSL

Next we need to modify our shader to transform our vertices 
by our perspective matrix.

This shader takes a matrix and applies it to each vertex: 

#version 330

uniform mat4 modelToScreen;

in vec4 vPosition;

void main() {

  gl_Position = modelToScreen * vPosition;

}
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Multiple uniforms
#version 330

uniform mat4 modelToScreen;

uniform mat4 modelToWorld;

uniform mat3 normalToWorld;

in vec4 vPosition;

in vec3 vNormal;

void main() {

  vec3 p = (modelToWorld * vPosition).xyz;

  vec3 n = normalize(normalToWorld * vNormal);

  // ...

Use multiple uniforms for 
different fields that are 
constant throughout the 
rendering pass, such as 
transform matrices and 
lighting coordinates.
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3. Lighting and Shading

● Vertex shader outputs are interpolated across 
fragments.

This makes the implementation of classic illumination models 
like Gouraud shading very straightforward.

// ...

out vec4 color;

void main() {

  vec3 N = // ...

  vec3 L = // ...

  float diffuse = Kd * clamp(0, dot(N, L), 1);

  color = vec4(PURPLE * diffuse, 1.0);

}

// ...

in vec4 color;

out vec4 fragmentColor;

void main() {

  fragmentColor = color;

}

// Vertex Shader // Fragment Shader

Diffuse lighting
  d = kD(N•L)

expressed as a shader
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Gouraud and Phong

Gouraud shading
● Compute color in vertex shader
● Let OpenGL interpolate color 

across fragments
● Output interpolated color

Phong shading
● Compute normal in vertex shader
● Let OpenGL interpolate normal 

across fragments
● Compute color separately for 

each fragment

GLSL includes handy helper methods for illumination, such as a reflect() method that reflects one vector across another--
perfect for specular highlighting.  For a few examples, check out the demo source code on github. 167

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

  bool isOutsideFace = 

      (length(position - CENTER) > 1);

  vec3 color = isOutsideFace ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);

}

Procedural texturing in the 
fragment shader

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

  bool isOutsideFace = 

      (length(position - CENTER) > 1);

  bool isMouth = 

      (length(position - CENTER) < 0.75)

      && (position.y <= -0.1);

  vec3 color = (isMouth || isOutsideFace)

      ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);

}

// ...

const vec3 CENTER = vec3(0, 0, 1);

const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);

const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);

// ...

void main() {

  bool isOutsideFace = (length(position - CENTER) > 1);

  bool isEye = (length(position - LEFT_EYE) < 0.1)

      || (length(position - RIGHT_EYE) < 0.1);

  bool isMouth = (length(position - CENTER) < 0.75)

      && (position.y <= -0.1);

  vec3 color = (isMouth || isEye || isOutsideFace)

      ? BLACK : YELLOW;

  fragmentColor = vec4(color, 1.0);

}

(Code truncated for brevity--again, check out 
the source on github for how I did the curved 
mouth and oval eyes.)
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Voronoi diagrams in the fragment 
shader

For a limited set of generating 
points, can compute the 
Voronoi Diagram in the 
fragment shader.

Simple version: “F2-F1”: find 
the nearest two generating 
points by iteration, render the 
isolines where their forces = 0.

Better: With a two-pass solution, 
can generate the isolines within 
the cell as well (see link)

Iñigo Quilez (Pixar, Oculus)
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
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More advanced surface effects

● Specular highlighting
● Non-photorealistic 

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the 

shader
● ...much, much more!
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Recommended reading
Course source code on Github -- many sample shaders
(https://github.com/AlexBenton/AdvancedGraphics/tree/master/AdvGraph1415)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner

ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and 
raycast scenes
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Ray Tracing
All the maths
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Ray tracing

● A powerful alternative to polygon scan-conversion techniques
● An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the 
center of every pixel and see what it hits.
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The algorithm
Select an eye point and a screen plane.
for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.
for (each object in the scene):

if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.
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Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
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"POV Planet" by Casey Uhrig (2004) 
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The basic algorithm is 
straightforward, but there's 
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit 

on the back of his business card.  (circa 1983)

It doesn’t take much code
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The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x 
(num objects in scene) x
(num reflective surfaces) x
(num transparent surfaces) x
(num shadow rays) x
(ray reflection depth) x …

Contrast this to polygon rasterization: time is a function of the 
number of elements in the scene times the number of lights.

Image by nVidia

Running time
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Ambient light:   kA

Diffuse light:   kD(N•L)
Specular light:   kS(R•E)n

           where R = L - 2(L•N)N

The total illumination at P is:
I(P) = kA+kD(N•L)+kS(R•E)n

summed over all lights L.

N

α

E

θ
L

R

P

Recall: illumination
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Once you have the point P (the intersection of the ray with 
the nearest object) you’ll compute how much each of the 
lights in the scene illuminates P.
diffuse = 0
specular = 0
for (each light Li in the scene):

if (N•L) > 0:
[Optionally: if (a ray from P to Li can reach Li):]

diffuse += kD(N•L)
specular += kS(R•E)n

intensity at P = ambient + diffuse + specular

E

L1

P

L2

L3

N

Ray-traced illumination
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A ray is defined parametrically as
P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the 
ray’s direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z:
x(t) = xE + txD
y(t) = yE + tyD         t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays
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Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation
x2 + y2 + z2 = 1 (γ)

Substituting equation (β) into (γ) gives
(xE+txD)2 + (yE+tyD)2 + (zE+tzD)2 = 1

which expands to
t2(xD

2+yD
2+zD

2) + t(2xExD+2yEyD+2zEzD) + (xE
2+yE

2+zE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t:

...giving us two points of intersection.
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Hitting things with rays:
Cylinder

The infinite unit cylinder, centered at the origin, has the implicit equation
x2 + y2  = 1 (δ)

Substituting equation (β) into (δ) gives
(xE+txD)2 + (yE+tyD)2  = 1

which expands to
t2(xD

2+yD
2) + t(2xExD+2yEyD) + (xE

2+yE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t as before, giving us two points of intersection.

The cylinder is infinite; there is no z term.
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A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0 (ζ)

Substituting equation (α) into (ζ) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv

1) + yN(yE+tyD-yv
1) + zN(zE+tzD-zv

1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons
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Half-planes method
● Each edge defines an infinite half-plane 

covering the polygon.  If the point P lies 
in all of the half-planes then it must be in 
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…v…

vn

vi

vi+1

P

eeR

Point in convex polygon
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Barycentric coordinates (tA,tB,tC) are a 
coordinate system for describing the location of 
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’ 

placed at (A,B,C) respectively so that the 
center of gravity of the triangle lies at P.

● (tA,tB,tC) are also proportional to the 
subtriangle areas.
○ The area of a triangle is ½ the length of the cross 

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates
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Winding number
● The winding number of a point P in a 

curve C is the number of times that the 
curve wraps around the point.

● For a simple closed curve (as any well-
behaved polygon should be) this will be 
zero if the point is outside the curve, non-
zero of it’s inside.

● The winding number is the sum of the 
angles from vi to P to vi+1.
○ Caveat: This method is elegant but slow.

Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994

Point in nonconvex polygon

189

Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of 
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling 
transforms and just project along any axis by ignoring (for 
example) the Z component.  

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon
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“Any simple closed curve C divides the points of the 
plane not on C into two distinct domains (with no 
points in common) of which C is the common 
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838 

-1922) in his Cours d'Analyse.  
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A 
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B 
must cross C.

A
B

C

The Jordan curve theorem
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Note that the Jordan curve theorem can be extended to 
a curve on a sphere, or anything which is topologically 
equivalent to a sphere.
“Any simple closed curve on a sphere separates the 

surface of the sphere into two distinct regions.”

A

B

The Jordan curve theorem on a sphere
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Local coordinates, world coordinates

The cylinder “as it sees 
itself”, in local coordinates

The cylinder “as the world sees it”, in world coordinates

5 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

* =

A 4x4 scale matrix, which 
multiplies x and z by 5, y by 2.

A very common technique in graphics is to associate a 
local-to-world transform, T, with a primitive.
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Local coordinates, world coordinates:
Transforming the ray

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

E

T-1E

In order to test whether a ray hits a transformed object, 
we need to describe the ray in the object’s local 
coordinates.  We transform the ray by the inverse of 
the local to world matrix, T-1.

If the ray is defined by 
P(t) = E + tD

then the ray in local coordinates is defined by
T-1(P(t)) = T-1(E) + t(T-13x3D)

where T-13x3 is the top left 3x3 submatrix of T-1.
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Finding the normal

We often need to know N, the normal to the surface at the 
point where a ray hits a primitive.

● If the ray R hits the primitive P at point X then N is…

We use the normal for color, reflection, refraction, shadow rays...

Primitive type Equation for N

Unit Sphere centered at the origin N = X

Infinite Unit Cylinder centered at the origin N = [ xX, yX, 0 ]

Infinite Double Cone centered at the origin N = X  × (X × [ 0, 0, zX ])

Plane with normal n N = n
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local

world

T

NL

NW

Converting the normal from local to world 
coordinates

To find the world-coordinates normal N from the 
local-coordinates NL, multiply NL by the transpose 
of the inverse of the top left-hand 3x3 submatrix of 
T:

N=((T3x3)
-1)T NL

● We want the top left 3x3 to discard translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c) 

becomes (1/a,1/b,1/c) when inverted

196

Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object 
transformed by local-to-world transform T:
1. Compute R’, the ray R in local coordinates, as 

P’(t) = T-1(P(t)) = T-1(E) + t(T-13x3(D))

2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to 

world coordinates by multiplying them by T.
4. Convert all hit normals from local coordinates back to 

world coordinates by multiplying them by ((T3x3)-1)T.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed 
primitive objects.
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Speed up ray-tracing with bounding 
volumes
Bounding volumes help to quickly accelerate volumetric tests, 
such as “does the ray hit the cow?”
● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight
Axis-aligned bounding boxes
● max and min of x/y/z.
Bounding spheres
● max of radius from some rough center
Bounding cylinders 
● common in early FPS games
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Bounding volumes in hierarchy

Hierarchies of bounding 
volumes allow early discarding 
of rays that won’t hit large 
parts of the scene.
● Pro: Rays can skip 

subsections of the hierarchy

● Con: Without spatial 
coherence ordering the 
objects in a volume you hit, 
you’ll still have to hit-test 
every object
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Subdivision of space

Split space into cells and list 
in each cell every object in 
the scene that overlaps that 
cell.
● Pro: The ray can skip empty 

cells

● Con: Depending on cell size, 
objects may overlap many 
filled cells or you may waste 
memory on many empty 
cells
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The BSP tree partitions the scene into 
objects in front of, on, and behind a 
tree of planes.
● When you fire a ray into the scene, you test 

all near-side objects before testing far-side 
objects.

Problems: 
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on floating-

point math.

A

B

C

E

F
D

Popular acceleration structures:
BSP Trees
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Popular acceleration structures:
kd-trees

The kd-tree is a simplification of the 
BSP Tree data structure 
● Space is recursively subdivided by axis-

aligned planes and points on either side of 
each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time 
(but this is very optimizable by domain 
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical 
slowdowns of BSPs because their planes are 
always axis-aligned.

Image from Wikipedia, bless their hearts.
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Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy 
subdivides space around the volumes 
of objects and shrinks each volume 
to remove unused space.
● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is 

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval 
Hierarchy, Eurographics (2006)
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Using OpenGL to accelerate ray-tracing
To accelerate first raycast, don’t 
raycast: use existing hardware.
● Use hardware rendering (eg OpenGL) 

to write to an offscreen buffer.
● Set the color of each primitive equal to 

a pointer to that primitive.
● Render your scene in gl with z-

buffering and no lighting.
● The ‘color’ value at each pixel in the 

buffer is now a pointer to the primitive 
under that pixel.
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Ray Tracing:
Image Quality and Texture

Alex Benton, University of Cambridge –

A.Benton@damtp.cam.ac.uk
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Shadows

To simulate shadows in ray tracing, fire a ray 
from P towards each light Li.  If the ray hits 
another object before the light, then discard Li 
in the sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.
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Softer shadows

Shadows in nature are not sharp because light sources are not 
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration: 

a coarse simulation of an integral over a space 
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.
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Softer shadows
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E

P

θ

L

S

Raytraced spotlights

D

To create a spotlight shining along axis S, you 
can multiply the (diffuse+specular) term by 
(max(L•S,0))m.  
● Raising m will tighten the spotlight,

but leave the edges soft.
● If you’d prefer a hard-edged spotlight

of uniform internal intensity, you can 
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).
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Reflection

Reflection rays are calculated as:
R = 2(-D•N)N+D

● Finding the reflected color is a 
recursive raycast.

● Reflection has scene-dependant 
performance impact.

● If you’re using the GPU, GLSL supports 
reflect() as a built-in function.

D
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num bounces=1

num bounces=0 num bounces=2

num bounces=3 217

E D
DT

Transparency

To add transparency, generate and trace a new 
transparency ray with ET=P, DT=D.

To support this in software, make color a 1x4 vector 
where the fourth component, ‘alpha’, 
determines the weight of the recursed 
transparency ray.
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1 Or sound waves or other waves

Refraction

The angle of incidence of a ray of light where it 
strikes a surface is the acute angle between the 
ray and the surface normal.
The refractive index of a material is a measure 
of how much the speed of light1 is reduced 
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.
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Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of 
light at the interface between two materials is equal to the 
inverse ratio of the refractive indices of the materials is equal 
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord 
Snell (1591-1626) and René Descartes (1596-1650) but first 
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction
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Refraction in ray tracing

Using Snell’s Law and the angle of 
incidence of the incoming ray, we 
can calculate the angle from the 
negative normal to the outbound 
ray.

E
D

P

P’

N
θ1

θ2
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Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in 

[-1,1].
● We call this the angle of total 

internal reflection: light is trapped 
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal 
reflection
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Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency, 
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that 
curved or inclined lines appear 
inappropriately jagged, caused by the 
mapping of a number of points to the same 
pixel.
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Aliasing

-

=
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Anti-aliasing

Fundamentally, the problem with aliasing is that we’re 
sampling an infinitely continuous function (the color of 
the scene) with a finite, discrete function (the pixels of the 
image).

Image source: www.svi.nl

One solution to this is 
super-sampling.  If we fire 
multiple rays through each 
pixel, we can average the 
colors computed for every 
ray together to a single 
blended color.
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Anti-aliasing

Single point
● Fire a single ray through the pixel’s center

Super-sampling
● Fire multiple rays through the pixel and 

average the result
● Regular grid, random, jittered, Poisson 

disks

Adaptive super-sampling
● Fire a few rays through the pixel, check 

the variance of the resulting values, if 
similar enough then stop else fire more 
rays
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Types of super-sampling

Regular grid
● Divide the pixel into a number of sub-pixels and 

fire a ray through the center of each
● This can still lead to noticeable aliasing unless a 

very high resolution of sub-pixel grid is used

Random
● Fire N rays at random points in the pixel
● Replaces aliasing artifacts with noise artifacts

● But the human eye is much less sensitive to 
noise than to aliasing

● Requires special treatment for animation
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Types of super-sampling

Poisson disk
● Fire N rays at random points in 

the pixel, with the proviso that 
no two rays shall pass through 
the pixel closer than ε to one 
another

● For N rays this produces a 
better looking image than pure 
random sampling

● However, can be very hard to 
implement correctly / quickly
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http://www.svi.nl/


Types of super-sampling

Jittered
● Divide the pixel into N sub-pixels and fire one 

ray at a random point in each sub-pixel
● Approximates the Poisson disk behavior
● Better than pure random sampling, easier (and 

significantly faster) to implement than Poisson

229

Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit: 
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 230

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently 
in one direction from another, as a function of the surface itself.  The specular 
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/ 231

Texture mapping

As observed in last year’s course, real-life objects rarely 
consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a 
surface, like a decal.  Coordinates on the surface are 
mapped to coordinates in the texture.
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Texture mapping

0, 0

0, 1 1, 1

1, 0

We’ll need to query the color of the 
texture at the point in 3D space where 
the ray hits our surface.  This is 
typically done by mapping

  (3D point in local coordinates)
  → U,V coordinates bounded [0-1, 0-1]
  → Texture coordinates bounded by

[image width, image height]
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UV mapping the primitives

UV mapping of a unit cube
if |x| == 1:
  u = (z + 1) / 2
  v = (y + 1) / 2
elif |y| == 1:
  u = (x + 1) / 2
  v = (z + 1) / 2
else:
  u = (x + 1) / 2
  v = (y + 1) / 2

UV mapping of a torus of 
major radius R

  u = 0.5 + atan2(z, x) / 2π
  v = 0.5 + atan2(y, ((x2 + z2)½ - R) / 2π

UV mapping of a unit sphere
  u = 0.5 + atan2(z, x) / 2π
  v = 0.5 - asin(y) / π

UV mapping is easy for primitives but can be very difficult for arbitrary shapes.
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Texture mapping

One constraint on using images for texture is that images 
have a finite resolution, and a virtual (ray-traced) camera 
can get quite near to the surface of an object.

This can lead to a 
single image pixel 
covering multiple ray-
traced pixels (or vice-
versa), leading to 
blurry or aliased pixels 
in your texture.
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Procedural texture

Instead of relying on discrete 
pixels, you can get infinitely 
more precise results with 
procedurally generated textures. 

Procedural textures compute the 
color directly from the U,V 
coordinate without an image 
lookup.

For example, here’s the code for 
the torus’ brick pattern (right):

  tx = (int) 10 * u

  ty = (int) 10 * v
  oddity = (tx & 0x01) == (ty & 0x01)
  edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
  return edge ? WHITE : RED

Confession: I cheated slightly and 
multiplied the u coordinate by 4 to repeat 
the brick texture four times around the 
torus.
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Procedural volumetric texture

By mapping 3D coordinates to colors, we can create 
volumetric texture.  The input to the texture is local model 
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow 
rings, with darker wood from earlier in the year and 
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood + 
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 237

Adding realism

The teapot on the previous slide doesn’t look very wooden, 
because it’s perfectly uniform.  One way to make the 
surface look more natural is to add a randomized noise 
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in 
space to scalar values chosen at random.

For natural-looking results, use 
Perlin noise, which interpolates 
smoothly between noise values.
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Perlin noise

Perlin noise (invented by Ken Perlin) is a method for 
generating noise which has some useful traits:

● It is a band-limited repeatable pseudorandom 
function (in the words of its author, Ken Perlin)

● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended 

arbitrarily in space, yet cached deterministically
● Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 239

Perlin noise 1

Perlin noise caches ‘seed’ random values on a grid at 
integer intervals.  You’ll look up noise values at 
arbitrary points in the plane, and they’ll be 
determined by the four nearest seed randoms on 
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in 
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)} 
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html240
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Perlin noise 2

For each of the four corners, take the dot product of the 
random seed vector with the vector from that corner to 
(x, y).  This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values 
of the dot products will change smoothly, with no 
discontinuity.

● As (x, y) approaches a grid point, the contribution from 
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range 
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)
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Perlin noise 3

Now we take a weighted average of LL, LR, UL, UR.  
Perlin noise uses a weighted averaging function chosen 
such that values close to zero and one are moved closer 
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =
 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))

Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at 
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’
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Tuning noise 

Texture frequency
1 → 3

Noise frequency
1 → 3

Noise amplitude
1 → 3 243

Normal mapping

Normal mapping applies the principles of texture mapping 
to the surface normal instead of surface color.

In a sense, the ray tracer 
computes a trompe-l’oeuil 
image on the fly and 
‘paints’ the surface with 
more detail than is actually 
present in the geometry.

The specular and diffuse shading of the 
surface varies with the normals in a 
dent on the surface.

If we duplicate the normals, we don’t 
have to duplicate the dent.
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Normal mapping
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Constructive Solid Geometry

Constructive Solid 
Geometry (CSG) builds 
complicated forms out of 
simple primitives.

These primitives are 
combined with basic 
boolean operations: add, 
subtract, intersect.

CSG figure by Neil Dodgson
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Constructive Solid Geometry

CSG models are easy to ray-trace but difficult to 
polygonalize
● Issues include choosing polygon boundaries at edges; 

converting adequately from pure smooth primitives to 
discrete (flat) faces; handling ‘infinitely thin’ sheet 
surfaces; and others.

● This is an ongoing research topic.
CSG models are well-suited to machine milling, automated 
manufacture, etc
● Great for 3D printers!
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Constructive Solid Geometry

Three operations:
1. Union   2. Intersection      3. Difference
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Constructive Solid Geometry

CSG surfaces can be described by a binary 
tree, where each leaf node is a primitive and 
each non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4
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For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points 

where r enters of leaves A or B.
● You can think of each intersection as 

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t 
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

Constructive Solid Geometry
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Ray-tracing CSG models

Each boolean operation can 
be modeled as a state 
machine.
For each operation, retain 
those intersections that 
transition into or out of
the critical state(s).
● Union: 

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and 
B

In A In B

Not in A 
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A
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Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B  Was In A  Is In A  Was In B  Is In B

 t1  No  Yes  No  No

 t2  Yes  Yes  No  Yes

 t3  Yes  No  Yes  Yes

 t4  No  No  Yes  No

difference = 
((wasInA != isInA) &&
 (!isInB)&&(!wasInB)) 
|| 
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models
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Difference Intersection

CSG in action
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What’s wrong with raytracing?
● Soft shadows are expensive
● Shadows of transparent objects require 

further coding or hacks
● Lighting off reflective objects follows 

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color 

bleeding, such as in the Cornell Box—
notice how the sides of the inner cubes are 
shaded red and green.)

● Fundamentally, the ambient term is a hack 
and the diffuse term is only one step in 
what should be a recursive, self-reinforcing 
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University 
in 1984 by Don Greenberg.  An actual box 
is built and photographed; an identical 
scene is then rendered in software and the 
two images are compared.
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Radiosity
● Radiosity is an illumination method 

which simulates the global 
dispersion and reflection of diffuse 
light.
● First developed for describing spectral 

heat transfer (1950s)
● Adapted to graphics in the 1980s at 

Cornell University
● Radiosity is a finite-element 

approach to global illumination: it 
breaks the scene into many small 
elements (‘patches’) and calculates 
the energy transfer between them.

Images from Cornell University’s graphics group 
http://www.graphics.cornell.edu/online/research/ 257

Radiosity—algorithm
● Surfaces in the scene are divided into form factors (also called 

patches), small subsections of each polygon or object.
● For every pair of form factors A, B, compute a view factor describing 

how much energy from patch A reaches patch B.
● The further apart two patches are in space or orientation, the less light 

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying 

more light to patches with higher relative view factors.  Repeating 
this step will distribute the total light across the scene, producing a 
total illumination model.
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Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving 
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch 
combined with the total light being reflected by the patch:

where…
Bi is the radiosity of patch i; 
Bj is the cumulative radiosity of all other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.
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Radiosity—form factors
● Finding form factors can be done 

procedurally or dynamically
● Can subdivide every surface into small 

patches of similar size
● Can dynamically subdivide wherever the 1st 

derivative of calculated intensity rises above 
some threshold.

● Computing cost for a general radiosity 
solution goes up as the square of the number 
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be 

a waste.
● Patches should ideally closely align with 

lines of shadow.
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Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor 

and walls of the room are dynamically 
subdivided to produce more patches 
where shadow detail is higher.

Images from “Automatic
generation of node spacing 
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/
nspE.htm 

(A) (B)
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Radiosity—view factors
One equation for the view factor between 
patches i, j is:

…where θi is the angle between the normal of 
patch i and the line to patch j, r is the distance 
and V(i,j) is the visibility from i to j (0 for 
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj
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Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a 

half-cube.  The scene is then ‘rendered’ from the point of view of the 
patch, through the walls of the hemicube; V(i,j) is computed for each 
patch based on which patches it can see (and at what percentage) in its 
hemicube.

● A purer method, but more computationally expensive, uses 
hemispheres.

Note: This method can be accelerated 
using modern graphics hardware to 
render the scene.  The scene is 
‘rendered’ with flat lighting, setting the 
‘color’ of each object to be a pointer to 
the object in memory.
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Radiosity gallery

Teapot (wikipedia)

Image from 
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation: 
a Synthesis of Ray Tracing and Radiosity Methods, 
John R. Wallace, Michael F. Cohen and Donald P. Greenberg 
(Cornell University, 1987)
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Shadows, refraction and caustics
● Problem: shadow ray strikes 

transparent, refractive object.  
● Refracted shadow ray will 

now miss the light.
● This destroys the validity of 

the boolean shadow test.
● Problem: light passing through 

a refractive object will 
sometimes form caustics (right), 
artifacts where the envelope of 
a collection of rays falling on 
the surface is bright enough to 
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and 
outside of its shadow.
Photo credit: Jan Zankowski
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Shadows, refraction and caustics

● Solutions for shadows of transparent 
objects:
● Backwards ray tracing (Arvo)

● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping 266

Photon mapping
Photon mapping is the process 
of emitting photons into a 
scene and tracing their paths 
probabilistically to build a 
photon map, a data structure 
which describes the 
illumination of the scene 
independently of its geometry. 

This data is then combined 
with ray tracing to compute the 
global illumination of the 
scene.

Image by Henrik Jensen (2000)

267

Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:
1.  Photon scattering

A. Photons are fired from each light source, scattered in 
randomly-chosen directions.  The number of photons per 
light is a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer, 
folks.)  Where they strike a surface they are either 
absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction 
and energy of the photon in the photon map.  The photon 
map data structure must support fast insertion and fast 
nearest-neighbor lookup; a kd-tree1 is often used.

Image by Zack Waters
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Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:
2.  Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for 

specular but compute diffuse from the photon map and do 
away with ambient completely.

C. Compute radiant illumination by summing the 
contribution along the eye ray of all photons within a 
sphere of radius r of P.

D. Caustics can be calculated directly here from the photon 
map.  For speed, the caustic map is usually distinct from 
the radiance map.

Image by Zack Waters
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Photon mapping is probabilistic
This method is a great example of 
Monte Carlo integration, in which a 
difficult integral (the lighting 
equation) is simulated by randomly 
sampling values from within the 
integral’s domain until enough 
samples average out to about the 
right answer.
● This means that you’re going to be 

firing millions of photons.  Your 
data structure is going to have to be 
very space-efficient.

http://www.okino.com/conv/imp_jt.htm
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Photon mapping is probabilistic
● Initial photon direction is random.  Constrained by light 

shape, but random.
● What exactly happens each time a photon hits a solid also 

has a random component:
● Based on the diffuse reflectance, specular reflectance and 

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1.  This gives a probability map:

● Choose a random value p є [0,1].  Where p falls in the 
probability map of the surface determines whether the photon is 
reflected, refracted or absorbed.

0 1pd ps pt
This surface would 
have minimal 
specular highlight.
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Photon mapping gallery

http://www.pbrt.org/gallery.php
http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/phot
on_mapping/PhotonMapping.html 

http://graphics.ucsd.edu/~henrik/images/global.html 
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