
Advanced Graphics

Beziers, B-splines, and
NURBS

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd
1

Bezier splines, B-Splines, and NURBS

Shiny, but reflections are warped Shiny, and reflections are perfect

Expensive products are sleek and smooth.
→ Expensive products are C2 continuous.

2

History

● Continuity (smooth curves) can
be essential to the perception of
quality.

● The automotive industry wanted
to design cars which were
aerodynamic, but also visibly of
high quality.

● Bezier (Renault) and de
Casteljau (Citroen) invented
Bezier curves in the 1960s. de
Boor (GM) generalized them to
B-splines.

3

History
The term spline comes from
the shipbuilding industry: long,
thin strips of wood or metal
would be bent and held in
place by heavy ‘ducks’, lead
weights which acted as control
points of the curve.
Wooden splines can be
described by Cn-continuous
Hermite polynomials which
interpolate n+1 control points.

Top: Fig 3, P.7, Bray and Spectre, Planking and Fastening, Wooden Boat Pub (1996)

Bottom: http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

4

Beziers—a quick review
● A Bezier cubic is a function P(t) defined

by four control points:
● P1 and P4 are the endpoints of the curve
● P2 and P3 define the other two corners of the

bounding polygon.
● The curve fits entirely within the convex

hull of P1...P4.
● A degree-d Bezier is infinitely continuous

throughout its interior. However, when
joining two Beziers, careful placement of
the control points is required to ensure
continuity.

P1

P2 P3

P4

Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4
5

Beziers

Cubics are just one example of Bezier splines:
● Linear: P(t) = (1-t)P1 + tP2

● Quadratic: P(t) = (1-t)2P1 + 2t(1-t)P2 + t2P3

● Cubic: P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

...

General:
“n choose i” = n! / i!(n-i)!

6

http://www.pranos.com/boatsofwood/lofting%20ducks/lofting_ducks.htm

Beziers

● You can describe Beziers as nested linear interpolations:
● The linear Bezier is a linear interpolation between two points:

P(t) = (1-t) (P1) + (t) (P2)
● The quadratic Bezier is a linear interpolation between two lines:

P(t) = (1-t) ((1-t)P1+tP2) + (t) ((1-t)P2+tP3)

● The cubic is a linear interpolation between linear interpolations between
linear interpolations… etc.

● Another way to see Beziers is as a weighted average
between the control points.

P1

P2

P3
(1-t)P1+tP2

(1-t)P2+tP3

P(t)

7

Bernstein polynomials

P(t) = (1-t)3P1 + 3t(1-t)2P2 + 3t2(1-t)P3 + t3P4

● The four control functions are the four Bernstein
polynomials for n=3.

• General form:
•

• Bernstein polynomials in 0 ≤ t ≤ 1 always sum to 1:

8

Joining Bezier splines

● To join two Bezier splines with C0
continuity, set P4=Q1.

● To join two Bezier splines with C1
continuity, require C0 and make the tangent
vectors equal: set P4=Q1 and P4-P3=Q2-Q1.

P4
Q1

Q2

P3
9

What if we want to chain Beziers together?

Consider a chain of splines with
many control points…

P = {P0, P1, P2, P3}
Q = {Q0, Q1, Q2, Q3}
R = {R0, R1, R2, R3}

…with C1 continuity…
P3=Q0, P2-P3=Q0-Q1
Q3=R0, Q2-Q3=R0-R1

We can parameterize this chain
over t by saying that instead of
going from 0 to 1, t moves
smoothly through the intervals
[0,1,2,3]

The curve C(t) would be:
 C(t) = P(t) • ((0 ≤ t <1) ? 1 : 0) +

Q(t-1) • ((1 ≤ t <2) ? 1 : 0) +
R(t-2) • ((2 ≤ t <3) ? 1 : 0)

[0,1,2,3] is a type of knot vector.
0, 1, 2, and 3 are the knots.

P4

Q1

Q2

P3

Q4

Q3

R2

R1

10

NURBS

● NURBS (“Non-Uniform Rational B-
Splines”) are a generalization of Beziers.
● NU: Non-Uniform. The knots in the knot vector

are not required to be uniformly spaced.
● R: Rational. The spline may be defined by

rational polynomials (homogeneous coordinates.)
● BS: B-Spline. A generalization of Bezier splines

with controllable degree.

11

B-Splines

● A Bezier cubic is a polynomial of degree three: it
must have four control points, it must begin at
the first and end at the fourth, and it assumes that
all four control points are equally important.

● B-spline curves are a piecewise parameterization
of a series of splines, that supports an arbitrary
number of control points and lets you specify the
degree of the polynomial which interpolates
them.

12

B-Splines
We’ll build our definition of a B-spline from:

● d, the degree of the curve
● k = d+1, called the parameter of the curve
● {P1…Pn}, a list of n control points
● [t1,…,tk+n], a knot vector of (k+n) parameter values

● d = k-1 is the degree of the curve, so k is the number of control
points which influence a single interval.
● Ex: a cubic (d=3) has four control points (k=4).

● There are k+n knots, and ti ≤ ti+1 for all ti.
● Each B-spline is C(k-2) continuous: continuity is degree minus one,

so a k=3 curve has d=2 and is C1.

13

B-Splines

● The equation for a B-spline curve is

● Ni,k(t) is the basis function of control point Pi for
parameter k. Ni,k(t) is defined recursively:

14

B-Splines

N1,1(t) N2,1(t) N3,1(t) N4,1(t) …

N1,2(t) N2,2(t) N3,2(t)

N1,3(t) N2,3(t)

N1,4(t)

…

…

…

t1 t2 t3 t4 t5 …

15

B-Splines

N5,1(t)=1, 4 ≤ t < 5

N3,1(t)=1, 2 ≤ t < 3

N1,1(t)=1, 0 ≤ t < 1

N4,1(t)=1, 3 ≤ t < 4

N2,1(t)=1, 1 ≤ t < 2

Knot vector = {0,1,2,3,4,5}, k = 1 → d = 0 (degree = zero)

N1,1(t) N2,1(t) N3,1(t) N4,1(t)
0 1 1 2 2 3 3 4

N5,1(t)
54

t1 = 0.0
t2 = 1.0
t3 = 2.0
t4 = 3.0
t5 = 4.0
t6 = 5.0

16

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Knot vector = {0,1,2,3,4,5}, k = 2 → d = 1 (degree = one)

B-Splines

17

N1,3(t) N2,3(t) N3,3(t)

Knot vector = {0,1,2,3,4,5}, k = 3 → d = 2 (degree = two)

B-Splines

18

N1,2(t) N2,2(t) N3,2(t) N4,2(t)

Basis functions really sum to one (k=2)

=
The sum of
the four basis
functions is
fully defined
(sums to one)
between
t2 (t=1.0) and
t5 (t=4.0).

19

N1,3(t) N2,3(t) N3,3(t)

Basis functions really sum to one (k=3)

+ +

=

The sum of
the three
functions is
fully defined
(sums to one)
between
t3 (t=2.0) and
t4 (t=3.0).

20

B-Splines

At k=2 the function is piecewise
linear, depends on P1,P2,P3,P4, and is
fully defined on [t2, t5).

Each parameter-k basis function depends on k+1 knot values; Ni,k depends on ti
through ti+k, inclusive. So six knots → five discontinuous functions → four piecewise
linear interpolations → three quadratics, interpolating three control points. n=3
control points, d=2 degree, k=3 parameter, n+k=6 knots.

At k=3 the function is piecewise
quadratic, depends on P1,P2,P3, and is
fully defined on [t3, t4).

Knot vector = {0,1,2,3,4,5} 21

Non-Uniform B-Splines
● The knot vector {0,1,2,3,4,5} is uniform:

ti+1-ti = ti+2-ti+1 ∀ti.
● Varying the size of an interval changes the parametric-

space distribution of the weights assigned to the control
functions.

● Repeating a knot value reduces the continuity of the
curve in the affected span by one degree.

● Repeating a knot k times will lead to a control function
being influenced only by that knot value; the spline will
pass through the corresponding control point with C0
continuity.

22

Open vs Closed

● A knot vector which repeats its first and last knot
values k times is called open, otherwise closed.
● Repeating the knots k times is the only way to

force the curve to pass through the first or last
control point.

● Without this, the functions N1,k and Nn,k which
weight P1 and Pn would still be ‘ramping up’
and not yet equal to one at the first and last ti.

23

Open vs Closed

● Two examples you may recognize:
● k=3, n=3 control points, knots={0,0,0,1,1,1}
● k=4, n=4 control points, knots={0,0,0,0,1,1,1,1}

Demo 24

http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

Non-Uniform Rational B-Splines

● Repeating knot values is a clumsy way to
control the curve’s proximity to the control
point.
● We want to be able to slide the curve nearer or

farther without losing continuity or introducing
new control points.

● The solution: homogeneous coordinates.
● Associate a ‘weight’ with each control point: ωi.

25

Non-Uniform Rational B-Splines

● Recall: [x, y, z, ω]H → [x / ω, y / ω, z / ω]
● Or: [x, y, z,1] → [xω, yω, zω, ω]H

● The control point
Pi=(xi, yi, zi)

becomes the homogeneous control point
PiH =(xiωi, yiωi, ziωi)

● A NURBS in homogeneous coordinates is:

26

Non-Uniform Rational B-Splines
● To convert from homogeneous coords to normal

coordinates:

27

Non-Uniform Rational B-Splines
● A piecewise rational curve is thus defined by:

with supporting rational basis functions:

This is essentially an average re-weighted by the ω’s.
● Such a curve can be made to pass arbitrarily far or near to

a control point by changing the corresponding weight.

28

Non-Uniform Rational B-Splines in action

Demo

29

Tensor product

● The tensor product of two vectors is a
matrix.

● Can also take the tensor of two polynomials.
● Each coefficient represents a piece of each of the two

original expressions, to the cumulative polynomial
represents both original polynomials completely.

30

http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html
http://www.cl.cam.ac.uk/teaching/0809/AdvGraph/demos/Nurbs2d/index.html

NURBS patches
● The tensor product of the polynomial

coefficients of two NURBS splines is a
matrix of polynomial coefficients.
● If curve A has parameter k and n control

points and curve B has parameter j and m
control points then A⊗B is an (n)x(m)
matrix of polynomials of parameter max
(j,k).

● Multiply this matrix against an (n)x(m)
matrix of control points and sum them all up
and you’ve got a bivariate expression for
a rectangular surface patch, in 3D

● This approach generalizes to triangles and
arbitrary n-gons.

31

References

● Les Piegl and Wayne Tiller, The NURBS
Book, Springer (1997)

● Alan Watt, 3D Computer Graphics,
Addison Wesley (2000)

● G. Farin, J. Hoschek, M.-S. Kim, Handbook
of Computer Aided Geometric Design,
North-Holland (2002)

32

33 34

35 36

Advanced Graphics

Subdivision
Surfaces

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd
37

NURBS patches aren’t the greatest

● NURBS patches are nxm,
forming a mesh of quadrilaterals.
● What if you wanted triangles or

pentagons?
● A NURBS dodecahedron?

● What if you wanted vertices of valence other than
four?

● NURBS expressions for triangular patches,
and more, do exist; but they’re cumbersome.

38

Problems with NURBS patches
● Joining NURBS patches

with Cn continuity
across an edge is
challenging.

● What happens to
continuity at corners
where the number of
patches meeting isn’t
exactly four?

● Animation is tricky:
bending and blending
are doable, but not easy.

Sadly, the world isn’t made up of shapes that
can always be made from one smoothly-
deformed rectangular surface.

39

● The solution:
subdivision surfaces.

Subdivision surfaces

● Beyond shipbuilding:
we want guaranteed
continuity, without
having to build
everything out of
rectangular patches.
● Applications include

CAD/CAM, 3D
printing, museums and
scanning, medicine,
movies…

Geri’s Game, by Pixar (1997)

40

Subdivision surfaces

● Instead of ticking a parameter t along
a parametric curve (or the parameters
u,v over a parametric grid),
subdivision surfaces repeatedly refine
from a coarse set of control points.

● Each step of refinement adds new
faces and vertices.

● The process converges to a smooth
limit surface.

(Catmull-Clark in action) 41

Subdivision surfaces – History

● de Rahm described a 2D (curve) subdivision
scheme in 1947; rediscovered in 1974 by Chaikin

● Concept extended to 3D (surface) schemes by two
separate groups during 1978:
● Doo and Sabin found a biquadratic surface
● Catmull and Clark found a bicubic surface

● Subsequent work in the 1980s (Loop, 1987; Dyn
[Butterfly subdivision], 1990) led to tools suitable
for CAD/CAM and animation

42

Subdivision surfaces and the movies

● Pixar first demonstrated subdivision
surfaces in 1997 with Geri’s Game.
● Up until then they’d done everything in

NURBS (Toy Story, A Bug’s Life.)
● From 1999 onwards everything they did was

with subdivision surfaces (Toy Story 2,
Monsters Inc, Finding Nemo...)

● Two decades on, it’s all heavily customized.
● It’s not clear what Dreamworks uses,

but they have recent patents on
subdivision techniques.

43

Useful terms
● A scheme which describes a 1D curve (even if that curve is

travelling in 3D space, or higher) is called univariate, referring
to the fact that the limit curve can be approximated by a
polynomial in one variable (t).

● A scheme which describes a 2D surface is called bivariate, the
limit surface can be approximated by a u,v parameterization.

● A scheme which retains and passes through its original control
points is called an interpolating scheme.

● A scheme which moves away from its
original control points, converging to a
limit curve or surface nearby, is called an
approximating scheme.

Control surface for Geri’s head
44

How it works

● Example: Chaikin curve subdivision (2D)
● On each edge, insert new control points at ¼ and

¾ between old vertices; delete the old points
● The limit curve is C1 everywhere (despite the poor

figure.)

45

Notation

Chaikin can be written programmatically as:

…where k is the ‘generation’; each generation will
have twice as many control points as before.
Notice the different treatment of generating odd and
even control points.
Borders (terminal points) are a special case.

←Even

←Odd

46

Notation

Chaikin can be written in vector notation as:

47

Notation
● The standard notation compresses the scheme to a kernel:

● h =(1/4)[…,0,0,1,3,3,1,0,0,…]
● The kernel interlaces the odd and even rules.
● It also makes matrix analysis possible: eigenanalysis of

the matrix form can be used to prove the continuity of the
subdivision limit surface.
● The details of analysis are fascinating, lengthy, and sadly

beyond the scope of this course
● The limit curve of Chaikin is a quadratic B-spline!

48

Consider the kernel
h=(1/8)[…,0,0,1,4,6,4,1,0,0,…]

You would read this as

The limit curve is provably C2-continuous.

Reading the kernel

49

Making the jump to 3D: Doo-Sabin

Doo-Sabin takes Chaikin to 3D:
P =(9/16) A +

(3/16) B +
(3/16) C +
(1/16) D

This replaces every old vertex
with four new vertices.
The limit surface is biquadratic,
C1 continuous everywhere.

P

A
B

C
D

50

Doo-Sabin in action

(3) 702 faces(2) 190 faces

(0) 18 faces (1) 54 faces

51

Catmull-Clark

● Catmull-Clark is a bivariate approximating
scheme with kernel h=(1/8)[1,4,6,4,1].
● Limit surface is bicubic, C2-continuous.

16 16

1616

24 24

4 4

4 4

6
36

6

6

6

1 1

1 1

/64

Face

Vertex

Edge

52

Catmull-Clark

Getting tensor again:

Vertex rule Face rule Edge rule

53

Catmull-Clark in action

54

Catmull-Clark vs Doo-Sabin

Doo-Sabin

Catmull-Clark
55

Extraordinary vertices
● Catmull-Clark and Doo-Sabin both

operate on quadrilateral meshes.
● All faces have four boundary edges
● All vertices have four incident edges

● What happens when the mesh contains
extraordinary vertices or faces?
● For many schemes, adaptive weights exist

which can continue to guarantee at least
some (non-zero) degree of continuity, but
not always the best possible.

● CC replaces extraordinary faces with
extraordinary vertices; DS replaces
extraordinary vertices with extraordinary
faces.

Detail of Doo-Sabin at cube
corner

56

Extraordinary vertices: Catmull-Clark

Catmull-Clark vertex
rules generalized for
extraordinary vertices:
● Original vertex:

(4n-7) / 4n
● Immediate neighbors in

the one-ring:
3/2n2

● Interleaved neighbors in
the one-ring:

1/4n2

Image source: “Next-Generation Rendering of Subdivision
Surfaces”, Ignacio Castaño, SIGGRAPH 2008 57

Schemes for simplicial (triangular) meshes

● Loop scheme: ● Butterfly scheme:

Vertex

Edge

Vertex

Edge

Split each triangle
into four parts

10

11

11

1 1

16

0 0

0

00

0

00

0 0

6

6

22

2

2

8 8

-1-1

-1 -1

(All weights are /16)

58

Loop subdivision

Loop subdivision in action. The asymmetry is due to the choice of face diagonals.
Image by Matt Fisher, http://www.its.caltech.edu/~matthewf/Chatter/Subdivision.html

59

Creases

Extensions exist for most schemes to support
creases, vertices and edges flagged for partial or
hybrid subdivision.

Still from “Volume
Enclosed by
Subdivision Surfaces
with Sharp Creases”
by Jan Hakenberg,
Ulrich Reif, Scott
Schaefer, Joe Warren
http://vixra.
org/pdf/1406.
0060v1.pdf

60

http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf
http://vixra.org/pdf/1406.0060v1.pdf

Continuous level of detail

For live applications (e.g. games) can compute
continuous level of detail, e.g. as a function of
distance:

Level 5 Level 5.2 Level 5.8 61

Direct evaluation of the limit surface

● In the 1999 paper Exact Evaluation Of Catmull-
Clark Subdivision Surfaces at Arbitrary Parameter
Values, Jos Stam (now at Alias|Wavefront)
describes a method for finding the exact final
positions of the CC limit surface.
● His method is based on calculating the tangent and normal

vectors to the limit surface and then shifting the control
points out to their final positions.

● What’s particularly clever is that he gives exact evaluation
at the extraordinary vertices. (Non-trivial.)

62

Bounding boxes and convex hulls for
subdivision surfaces
● The limit surface is (the weighted average of (the weighted

averages of (the weighted averages of (repeat for eternity…))))
the original control points.

● This implies that for any scheme where all weights are positive
and sum to one, the limit surface lies entirely within the
convex hull of the original control points.

● For schemes with negative weights:
● Let L=maxt Σi |Ni(t)| be the greatest sum throughout parameter

space of the absolute values of the weights.
● For a scheme with negative weights, L will exceed 1.
● Then the limit surface must lie within the convex hull of the

original control points, expanded unilaterally by a ratio of (L-1).

63

Splitting a subdivision surface
Many algorithms rely on subdividing a surface and
examining the bounding boxes of smaller facets.
● Rendering, ray/surface intersections…

It’s not enough just to delete half your control points: the
limit surface will change (see right)
● Need to include all control points from the previous

generation, which influence the limit surface in this
smaller part.

(Top) 5x Catmull-Clark subdivision of a cube
(Bottom) 5x Catmull-Clark subdivision of two halves of a cube;
the limit surfaces are clearly different. 64

Ray/surface intersection
● To intersect a ray with a subdivision surface,

we recursively split and split again,
discarding all portions of the surface whose
bounding boxes / convex hulls do not lie on
the line of the ray.

● Any subsection of the surface which is ‘close
enough’ to flat is treated as planar and the
ray/plane intersection test is used.

● This is essentially a binary tree search for the
nearest point of intersection.
● You can optimize by sorting your list of

subsurfaces in increasing order of distance
from the origin of the ray.

65

Rendering subdivision surfaces
● The algorithm to render any subdivision surface is exactly the

same as for Bezier curves:
“If the surface is simple enough, render it directly;
otherwise split it and recurse.”

● One fast test for “simple enough” is,
“Is the convex hull of the limit surface
sufficiently close to flat?”

● Caveat: splitting a surface and
subdividing one half but not the
other can lead to tears where
the different resolutions meet. →

66

Figure from Generic Mesh Renement on GPU,
Tamy Boubekeur & Christophe Schlick (2005)
LaBRI INRIA CNRS University of Bordeaux, France

Rendering subdivision surfaces on the GPU

● Subdivision algorithms have been ported to the
GPU, often using geometry shaders.
● This subdivision can be done completely independently of

geometry, imposing no demands on the CPU.
● Uses a complex blend

of precalculated weights
and shader logic

● Impressive effects
in use at id, Valve,
et al

67

Subdivision Schemes—A partial list
● Approximating

● Quadrilateral
● (1/2)[1,2,1]
● (1/4)[1,3,3,1]

(Doo-Sabin)
● (1/8)[1,4,6,4,1]

(Catmull-Clark)
● Mid-Edge

● Triangles
● Loop

● Interpolating
● Quadrilateral

● Kobbelt
● Triangle

● Butterfly
● “√3” Subdivision

Many more exist, some much
more complex
This is a major topic of
ongoing research

68

References
Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary
Topological Meshes.” Computer Aided Design, 1978.
Dyn, N., J. A. Gregory, and D. A. Levin. “Butterfly Subdivision Scheme for
Surface Interpolation with Tension Control.” ACM Transactions on
Graphics. Vol. 9, No. 2 (April 1990): pp. 160–169.
Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using
Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.
Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.”
Ph.D. diss., California Institute of Technology, 1997
Ignacio Castano, “Next-Generation Rendering of Subdivision Surfaces.” Siggraph
’08, http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
Dennis Zorin’s SIGGRAPH course, “Subdivision for Modeling and Animation”,
http://www.mrl.nyu.edu/publications/subdiv-course2000/

69
70

71 72

http://developer.nvidia.com/object/siggraph-2008-Subdiv.html
http://www.mrl.nyu.edu/publications/subdiv-course2000/
http://www.mrl.nyu.edu/publications/subdiv-course2000/

Advanced Graphics

Implicit Surfaces, Voxels, Voronoi Diagrams and Particle Systems

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd
73

Implicit surfaces
Implicit surface modeling(1) is a
way to produce very ‘organic’ or
‘bulbous’ surfaces very quickly
without subdivision or NURBS.
Uses of implicit surface
modelling:
● Organic forms and nonlinear

shapes
● Scientific modeling (electron

orbitals, gravity shells in space,
some medical imaging)

● Muscles and joints with skin
● Rapid prototyping
● CAD/CAM solid geometry

(1) AKA “metaball modeling”, “force
functions”, “blobby modeling”… 74

How it works

The user controls a set of control points, like
NURBS; each point in space generates a field of
force, which drops off as a function of distance
from the point (like gravity weakening with
distance.)

This 3D field of forces defines an implicit surface: the
set of all the points in space where some
mathematical function (in this case, the value of the
force field) has a particular key value.

Force = 2

1

0.5

0.25 ...
75

A few popular force field functions:
● “Blobby Molecules” – Jim Blinn

F(r) = a e-br2

● “Metaballs” – Jim Blinn
 a(1- 3r2 / b2) 0 ≤ r < b/3

F(r) = (3a/2)(1-r/b)2 b/3 ≤ r < b
 0 b ≤ r

● “Soft Objects” – Wyvill & Wyvill
F(r) = a(1 - 4r6/9b6 + 17r4/9b4 - 22r2 / 9b2)

Force functions

76

Comparison of force functions

77

Discovering the surface

An octree is a recursive subdivision of
space which “homes in” on the surface,
from larger to finer detail.
● An octree encloses a cubical volume in space.

You evaluate the force function F(v) at each
vertex v of the cube.

● As the octree subdivides and splits into smaller
octrees, only the octrees which contain some of
the surface are processed; empty octrees are
discarded.

78

Polygonizing the surface

To display a set of octrees, convert the octrees into polygons.
● If some corners are “hot” (above the force limit) and others are

“cold” (below the force limit) then the implicit surface crosses the
cube edges in between.

● The set of midpoints of adjacent crossed edges forms one or more
rings, which can be triangulated. The normal is known from the
hot/cold direction on the edges.

To refine the polygonization, subdivide recursively; discard any
child whose vertices are all hot or all cold.

79

Polygonizing the surface

Recursive subdivision (on a quadtree):

80

Polygonizing the surface
There are fifteen possible
configurations (up to symmetry) of
hot/cold vertices in the cube. →
● With rotations, that’s 256 cases.

Beware: there are ambiguous cases in
the polygonization which must be
addressed separately. ↓

Images courtesy of Diane Lingrand

81

Polygonizing the surface

One way to overcome the ambiguities
that arise from the cube is to
decompose the cube into tretrahedra.

● A common decomposition is into
five tetrahedra. →

● Caveat: need to flip every other
cube. (Why?)

● Can also split into six.
Another way is to do the subdivision

itself on tetrahedra—no cubes at all.
Image from the Open Problem Garden

82

Smoothing the surface

Improved edge vertices
● The naïve implementation builds polygons whose

vertices are the midpoints of the edges which lie
between hot and cold vertices.

● The vertices of the implicit surface can be more
closely approximated by points linearly interpolated
along the edges of the cube by the weights of the
relative values of the force function.
● t = (0.5 - F(P1)) / (F(P2) - F(P1))
● P = P1 + t (P2 - P1)

83

Implicit surfaces -- demo

84

http://www.polytech.unice.fr/~lingrand/MarchingCubes/algo.html
http://garden.irmacs.sfu.ca/?q=op/simplexity_of_the_cube

Marching cubes
An alternative to octrees if you only want
to compute the final stage is the marching
cubes algorithm (Lorensen & Cline, 1985):

● Fire a ray from any point known to be
inside the surface.

● Using Newton’s method or binary search,
find where the ray crosses the surface.

● Newton: derivative estimated from discrete
local sampling

● There may be many crossings
● Drop a cube around the intersection point:

it will have some vertices hot, some cold.
● While there exists a cube which has at least

one hot vertex and at least one cold vertex
on a side and no neighbor on that side,
create a neighboring cube on that side.
Repeat.

Marching cubes is common in medical imaging such as MRI scans.
It was first demonstrated (and patented!) by researchers at GE in
1984, modeling a human spine.

85

Voxels and volume rendering
A voxel (“volume pixel”) is a cube in space
with a given color; like a 3D pixel.
● Voxels are often used for medical imaging,

terrain, scanning and model reconstruction,
and other very large datasets.

● Voxels usually contain color but could contain
other data as well—flow rates (in medical
imaging), density functions (analogous to
implicit surface modeling), lighting data,
surface normals, 3D texture coordinates, etc.

● Often the goal is to render the voxel data
directly, not to polygonize it.

86

Voxels for deformable geometry

Voxels are uniquely well-
suited to large-scale,
dynamically deformable
environments.
Geometry stored in a
recursive data structure
(“chunks”, arrays of cubes
containing arrays of cubes)
can be locally edited in real
time.

Fan art from the game Minecraft
(from Deviantart.com, Wallchan.com) 87

Volume ray casting
If speed can be sacrificed for accuracy,
render voxels with volume ray casting:
● Fire a ray through each pixel;
● Sample the voxel data along the ray,

computing the weighted average
(trilinear filter) of the contributions to
the ray of each voxel it passes through;

● Compute surface gradient from of each
voxel from local sampling; generate
surface normals; compute lighting with
the standard lighting equation;

● ‘Paint’ the ray from back to front,
occluding more distant voxels with
nearer voxels; this is the Painter’s
Algorithm for hidden-surface removal.

Top: the steps of volume rendering
Bottom: a volume ray-cast skull.
Images from wikipedia. 88

Sampling in voxel rendering

Why trilinear filtering?
● If we just show the color of the voxel we hit,

we’ll see the exact edges of every cube.
● Instead, choose the weighted average between

adjacent voxels.
○ Trilinear: averaging across X, Y, and Z

Your sample will fall somewhere
between eight (in 3d) voxel centers.
Weight the color of the sample by the
inverse of its distance from the center
of each voxel.

89

The Voronoi diagram(2) of a set of
points Pi divides space into
‘cells’, where each cell Ci
contains the points in space
closer to Pi than any other Pj.

The Delaunay triangulation is the
dual of the Voronoi diagram: a
graph in which an edge
connects every Pi which share a
common edge in the Voronoi
diagram.

A Voronoi diagram (dotted lines) and its
dual Delaunay triangulation (solid).

(2) AKA “Voronoi tesselation”, “Dirichelet
domain”, “Thiessen polygons”, “plesiohedra”,
“fundamental areas”, “domain of action”…

Voronoi diagrams

90

Delaunay triangulation applet by Paul Chew ©1997—2007
http://www.cs.cornell.edu/home/chew/Delaunay.html

Voronoi diagrams
Given a set S={p1,p2,…,pn}, the formal
definition of a Voronoi cell C(S,pi) is
 C(S,pi)={p є Rd | |p-pi|<|p-pj|, i≠j}
The pi are called the generating points
of the diagram.

Where three or more boundary edges
meet is a Voronoi point. Each Voronoi
point is at the center of a circle (or
sphere, or hypersphere…) which passes
through the associated generating points
and which is guaranteed to be empty of
all other generating points.

91

Delaunay triangulations and equi-angularity

The equiangularity of any
triangulation of a set of points
S is a sorted list of the angles
(α1… α3t) of the triangles.
● A triangulation is said to be

equiangular if it possesses
lexicographically largest
equiangularity amongst all
possible triangulations of S.

● The Delaunay triangulation
is equiangular.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

92

Delaunay triangulations and empty circles

Voronoi triangulations have
the empty circle property: in
any Voronoi triangulation of S,
no point of S will lie inside the
circle circumscribing any three
points sharing a triangle in the
Voronoi diagram.

Image from Handbook of Computational Geometry
(2000) Jörg-Rüdiger Sack and Jorge Urrutia, p. 227

93

Delaunay triangulations and convex hulls
The border of the Delaunay
triangulation of a set of points is
always convex.
● This is true in 2D, 3D, 4D…

The Delaunay triangulation of a
set of points in Rn is the planar
projection of a convex hull in
Rn+1.
● Ex: from 2D (Pi={x,y}i), loft

the points upwards, onto a
parabola in 3D (P’i={x,y,x2+y2}
i). The resulting polyhedral
mesh will still be convex in 3D.

94

Voronoi diagrams and the medial axis
The medial axis of a surface is the set of all points
within the surface equidistant to the two or more
nearest points on the surface.
● This can be used to extract a skeleton of the

surface, for (for example) path-planning
solutions, surface deformation, and animation.

Shape Deformation using a Skeleton to Drive Simplex Transformations
IEEE Transaction on Visualization and Computer Graphics, Vol. 14, No. 3, May/June
2008, Page 693-706
Han-Bing Yan, Shi-Min Hu, Ralph R Martin, and Yong-Liang Yang

Approximating the Medial Axis from the Voronoi
Diagram with a Convergence Guarantee
Tamal K. Dey, Wulue Zhao

A Voronoi-Based Hybrid Motion Planner for Rigid Bodies
M Foskey, M Garber, M Lin, DManocha

95

Finding the Voronoi diagram
There are four general classes of
algorithm for computing the Delaunay
triangulation:
● Divide-and-conquer
● Sweep plane

○ Ex: Fortune’s algorithm →
● Incremental insertion
● “Flipping”: repairing an existing

triangulation until it becomes
Delaunay Fortune’s Algorithm for the plane-sweep construction of the

Voronoi diagram (Steve Fortune, 1986.)

This triangulation fails the circumcircle definition; we flip its
inner edge and it becomes Delaunay. (Image from Wikipedia.)

96

http://www.cs.cornell.edu/home/chew/Delaunay.html
http://www.cs.cornell.edu/home/chew/Delaunay.html
http://www.cs.cornell.edu/home/chew/Delaunay.html
http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://cg.cs.tsinghua.edu.cn/papers/deform.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cse.ohio-state.edu/~tamaldey/paper/medial.pdf
http://www.cs.unc.edu/~geom/voronoi/vplan
http://www.cs.unc.edu/~geom/voronoi/vplan

Fortune’s algorithm
1. The algorithm maintains a sweep line and a

“beach line”, a set of parabolas advancing
left-to-right from each point. The beach line
is the union of these parabolas.
a. The intersection of each pair of

parabolas is an edge of the voronoi
diagram

b. All data to the left of the beach line is
“known”; nothing to the right can
change it

c. The beach line is stored in a binary tree
2. Maintain a queue of two classes of event: the

addition of, or removal of, a parabola
3. There are O(n) such events, so Fortune’s

algorithm is O(n log n)

97

GPU-accelerated Voronoi Diagrams

Brute force:
● For each pixel to be

rendered on the GPU,
search all points for the
nearest point

Elegant:
● Render each point as a

discrete cone in
isometric projection, let
z-buffering sort it out

98

Voronoi cells in 3D

99

Silvan Oesterle, Michael Knauss

Particle systems
Particle systems are a monte-carlo style
technique which uses thousands (or
millions) or tiny graphical artefacts to
create large-scale visual effects.

Particle systems are used for hair, fire,
smoke, water, spores, clouds, explosions,
energy glows, in-game special effects
and much more.

The basic idea:
“If lots of little things all do something
the same way, our brains will see the
thing they do and not the dots doing it.”

Fallout 4
(Bethesda)

Command and
Conquer 3
(Electronic Arts)

100

History of particle systems

● 1962: Ships explode into
pixel clouds in
“Spacewar!”, the 2nd
video game ever.

● 1978: Ships explode into
broken lines in
“Asteroid”.

● 1982: The Genesis Effect
in “Star Trek II: The
Wrath of Khan”.

Fanboy note: You can play the original Spacewar at
http://spacewar.oversigma.com/ -- the actual original
game,running in a PDP-1 emulated in a Java applet. 101

Particle systems

How it works:
● Particles are generated an emitting source

● Emitter position and orientation are specified discretely;
● Emitter rate, direction, flow, etc are often specified as a

bounded random range
● This gives a Monte Carlo integration-style effect

● Time ticks; at each tick, particles move.
● New particles are generated; expired particles are

deleted
● Forces (gravity, wind, etc) accelerate each particle
● Acceleration changes velocity
● Velocity changes position

● Particles are textured and rendered.

Transient vs persistent particles
emitted to create a ‘hair’ effect
(source: Wikipedia) 102

http://spacewar.oversigma.com/

Particle systems—implementations
Closed-form function:
● Represent every particle as a

parametric equation; store only
the initial position p0, initial
velocity v0, then apply fixed
acceleration (such as gravity g.)
● p(t)=p0+v0t+½gt2

● No storage of state → small
memory footprint

● Very limited possibility of
interaction

● Best for fire, projectiles, etc—
non-responsive particles.

Discrete integration:
● Update every particle separately;

this can be expressed as a loop
over a list, or as a mutation of a
texture (if using a GPU), or as a
massive matrix multiplication
operation (if using CUDA)

NVIDIA
103

Particle systems—rendering
Can render particles as points, textured polys, or
primitive geometry
● Minimize the data sent down the pipe!
● Polygons with alpha-blended images make pretty

good fire, smoke, etc
Transitioning one particle type to another
creates realistic interactive effects
● Ex: a ‘rain’ particle becomes an emitter for

‘splash’ particles on impact
Particles can be the force sources for a
blobby model implicit surface
● Nice for simulating liquids

nvidia

Hagit Schechter
http://www.cs.ubc.
ca/~hagitsch/Research/

104

“The Genesis Effect” – William Reeves
Star Trek II: The Wrath of Khan (1982)

105

References

106

Implicit modelling:
D. Ricci, A Constructive Geometry for Computer Graphics, Computer Journal, May 1973
J Bloomenthal, Polygonization of Implicit Surfaces, Computer Aided Geometric Design, Issue 5, 1988
B Wyvill, C McPheeters, G Wyvill, Soft Objects, Advanced Computer Graphics (Proc. CG Tokyo 1986)
B Wyvill, C McPheeters, G Wyvill, Animating Soft Objects, The Visual Computer, Issue 4 1986
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf
Voxels:
J. Wilhelms and A. Van Gelder, A Coherent Projection Approach for Direct Volume Rendering, Computer Graphics, 35(4):275-284,

July 1991.
Voronoi diagrams
M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, “Computational Geometry: Algorithms and Applications”, Springer-Verlag,

http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm // Voronois on GPU
Particle Systems:
William T. Reeves, “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”, Computer Graphics 17:3 pp. 359-376,

1983 (SIGGRAPH 83).
Lutz Latta, Building a Million Particle System, http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf , 2004
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://mmacklin.com/pbf_sig_preprint.pdf

107 108

http://www.youtube.com/watch?v=WpspM16kS_g
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://astronomy.swin.edu.au/~pbourke/modelling/implicitsurf/
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.cs.berkeley.edu/~job/Papers/turk-2002-MIS.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www.unchainedgeometry.com/jbloom/papers/interactive.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf
http://www-courses.cs.uiuc.edu/~cs319/polygonization.pdf
http://www.cs.uu.nl/geobook/
http://www.cs.uu.nl/geobook/
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.ics.uci.edu/~eppstein/junkyard/nn.html
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://www.darwin3d.com/gamedev/articles/col0798.pdf
http://mmacklin.com/pbf_sig_preprint.pdf
http://mmacklin.com/pbf_sig_preprint.pdf

Advanced
Graphics

“Nobody expects the
geometric inquisition”

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

109

Querying your geometry

Given a polygonal model, how might you
find…
● the normal at each vertex?
● the curvature at each vertex?
● the convex hull?
● the bounding box?
● the center of mass?

110

Querying your geometry

“Here’s some geometry. What can we know?”
● A recurring theme here will be,

“The polygons are not the shape: the polygons
approximate the surface of the shape.”

● Some questions from we could ask (e.g. ray-
polygon intersection) are about the actual
polygons.

● But other questions, like the normal at a vertex, are
really about approximating the underlying surface
as closely as possible.

111

Terminology

● We’ll be focusing on discrete (as
opposed to continuous) representation
of geometry; i.e., polygon meshes

● Many rendering systems limit themselves
to triangle meshes

● Many require that the mesh be manifold
● In a closed manifold polygon mesh:

● Exactly two triangles meet at each edge
● The faces meeting at each vertex belong to

a single, connected loop of faces
● In a manifold with boundary:

● At most two triangles meet at each edge
● The faces meeting at each vertex belong to

a single, connected strip of faces

Edge: Non-manifold vs manifold

Non-manifold vertex

Vertex: Good boundary vs bad

This slide draws much inspiration from Shirley and Marschner’s
Fundamentals of Computer Graphics, pp. 262-263

112

Terminology

● We say that a surface is oriented if:
a. the vertices of every face are stored in a fixed

order
b. if vertices i, j appear in both faces f1 and f2, then

the vertices appear in order i, j in one and j, i in
the other

● We say that a surface is embedded if,
informally, “nothing pokes through”:
a. No vertex, edge or face shares any point in space

with any other vertex, edge or face except where
dictated by the data structure of the polygon mesh

● A closed, embedded surface must separate
3-space into two parts: a bounded interior
and an unbounded exterior.

A cube with “anti-clockwise”
oriented faces

Klein bottle:
not an
embedded
surface.

Also, terrible
for holding
drinks.

This slide draws much inspiration from Hughes and Van Dam’s
Computer Graphics: Principles and Practice, pp. 637-642

113

Normal at a vertex

Expressed as a limit,
The normal of surface S at point P is the limit of the
cross-product between two (non-collinear) vectors
from P to the set of points in S at a distance r from P
as r goes to zero. [Excluding orientation.]

114

Normal at a vertex

Using the limit definition, is the ‘normal’ to a
discrete surface necessarily a vector?
● The normal to the surface at any point on a face is a

constant vector.
● The ‘normal’ to the surface at any edge is an arc swept

out on a unit sphere between the two normals of the
two faces.

● The ‘normal’ to the surface at a vertex is a space swept
out on the unit sphere between the normals of all of the
adjacent faces.

115

Finding the normal at a vertex

Method 1: Take the
average of the normals
of surrounding polygons

Problem: splitting one
adjacent face into 10,000
shards would skew the
average

116

Finding the normal at a vertex

Method 2: Take the
weighted average of the
normals of surrounding
polygons, weighted by the
area of each face
● 2a: Weight each face

normal by the area of the
face divided by the total
number of vertices in the
face

Problem: Introducing new edges
into a neighboring face (and
thereby reducing its area) should
not change the normal.
Should making a face larger
affect the normal to the surface
near its corners?
● Argument for yes: If the vertices

interpolate the ‘true’ surface,
then stretching the surface at a
distance could still change the
local normals.

117

Finding the normal at a vertex

Method 3: Take the
weighted average of the
normals of surrounding
polygons, weighted by each
polygon’s face angle at the
vertex

Face angle: the angle α
formed at the vertex v by
the vectors to the next and
previous vertices in the
face F

Note: In this equation, arccos
implies a convex polygon. Why?

NF

118

Gaussian curvature on smooth surfaces

Informally speaking, the
curvature of a surface
expresses “how flat the
surface isn’t”.
● One can measure the

directions in which the
surface is curving most; these
are the directions of principal
curvature, k1 and k2.

● The product of k1 and k2 is the
scalar Gaussian curvature.

Image by Eric Gaba, from Wikipedia

119

Gaussian curvature on smooth surfaces

Formally, the Gaussian
curvature of a region on a
surface is the ratio between
the area of the surface of the
unit sphere swept out by the
normals of that region and
the area of the region itself.
The Gaussian curvature of a
point is the limit of this ratio
as the region tends to zero
area.

Area on the surface
Area of the projections
of the normals on the
unit sphere

anus
as

0 on a plane

anus
as

r-2 on a sphere of radius r
(please pretend that this is a sphere)

120

Gaussian curvature on discrete surfaces

On a discrete surface, normals do not vary
smoothly: the normal to a face is constant on the
face, and at edges and vertices the normal is—
strictly speaking—undefined.
● Normals change instantaneously (as one's point of view

travels across an edge from one face to another) or not at all
(as one's point of view travels within a face.)

The Gaussian curvature of the surface of any
polyhedral mesh is zero everywhere except at the
vertices, where it is infinite.

121

Angle deficit – a better solution for
measuring discrete curvature

The angle deficit AD(v) of a vertex v is defined
to be two π minus the sum of the face angles of
the adjacent faces.

90˚90˚

90˚ AD(v) = 360 ˚ – 270 ˚ = 90 ˚

122

Angle deficit

High angle deficit Low angle deficit Negative angle deficit

123

Hmmm…

Angle deficit

124

Genus, Poincaré and the Euler Characteristic

● Formally, the genus g of a closed
surface is
...“a topologically invariant property of a

surface defined as the largest number
of nonintersecting simple closed
curves that can be drawn on the
surface without separating it.”

--mathworld.com
● Informally, it’s the number of

coffee cup handles in the surface.

Genus 0

Genus 1

125

Genus, Poincaré and the Euler Characteristic

Given a polyhedral surface S without border
where:
● V = the number of vertices of S,
● E = the number of edges between those vertices,
● F = the number of faces between those edges,
● χ is the Euler Characteristic of the surface,

the Poincaré Formula states that:

126

Genus, Poincaré and the Euler Characteristic

g = 0
E = 12
F = 6
V = 8
V-E+F = 2-2g = 2

g = 0
E = 15
F = 7
V = 10
V-E+F = 2-2g = 2

g = 1
E = 24
F = 12
V = 12
V-E+F = 2-2g = 0

4 faces

3 faces

127

The Euler Characteristic and angle deficit

Descartes’ Theorem of Total Angle Deficit states that
on a surface S with Euler characteristic χ, the sum of
the angle deficits of the vertices is 2πχ:

Cube:
● χ = 2-2g = 2
● AD(v) = π/2
● 8(π/2) = 4π = 2πχ

Tetrahedron:
● χ = 2-2g = 2
● AD(v) = π
● 4(π) = 4π = 2πχ

128

Convex hull

The convex hull of a set of points is the unique surface
of least area which contains the set.
● If a set of infinite half-planes have a finite non-empty

intersection, then the surface of their intersection is a convex
polyhedron.

● If a polyhedron is convex then for any two faces A and B in
the polyhedron, all points in B which are not in A lie to the
same side of the plane containing A.

Every point on a convex hull has non-negative angle
deficit.
The faces of a convex hull are always convex.

129

Finding the convex hull of a set of points

Method 1: For every
triple of points in the set,
define a plane P. If all
other points in the set lie
to the same side of P
(dot-product test) then
add P to the hull; else
discard.

Problem 1: this works but
it’s O(n4).

130

Finding the convex hull of a set of points

Method 2:
● Initialize C with a tetrahedron from any four non-colinear points in

the set. Orient the faces of C by taking the dot product of the center
of each face with the average of the vertices of C.

● For each vertex v,
● For each face f of C,

● If the dot product of the normal of f with the vector from the center of f to v
is positive then v is ‘above’ f.

● If v is above f then delete f and update a (sorted) list of all new border
vertices.

● Create a new triangular face from v to each pair of border vertices.

Problem 2:
This is O(n2) at best.

131

Finding the convex hull of a set of points

Method 3:
The exterior boundary of the union of the
cells of the Delaunay triangulation of a set
of points is its convex hull.

Algorithm:
● Find the Voronoi diagram of your point set
● Compute the Delaunay triangulation (2D) or

tetrahedralization (3D)
● Delete all faces of the simplices which aren’t on

the exterior border

The exterior border of the
Delaunay triangulation is
the convex hull of the point
set.

132

Testing if a point is inside a convex hull

We can generalize Method 2 to test whether a
point is inside any convex polyhedron.
● For each face, test the dot product of the normal of

the face with a vector from the face to the point. If
the dot is ever positive, the point lies outside.

● The same logic applies if you’re storing normals at
vertices.

133

Centroids

The centroid of a surface is the center
of mass of the volume enclosed by the
surface.
This is not the same as the center of the
bounding box.
● We’ll assume that the ‘material’ within the

surface is of uniform density.
● We’ll also assume that we have a closed

surface (without border.)

134

Centroids

Method 1: Take the
average of all vertices.

C = (Σ{v}(v)) / ||{v}||

Problem 1: as with
normals, an area of
bizarre density would
skew the average.

True centroid Average of vertices

Center of bounding box

~50 verts ~500 verts

135

Centroids

Method 2: Take the average
of the centers of the faces of
the surface, weighting each
by the area of the face.
● This method works well for

convex polyhedra.

Problem 2: This is vulnerable
to dense ‘wrinkles’ of many
polygons packed into a small
volume.

The average adult human brain has a surface area of approximately 2,500 cm2, a volume of roughly 1200 cm3, and weighs about 1400g. For
comparison, a sphere of similar volume would have a surface area of 546 cm2. Brain image courtesy of Moprhonix.com.

136

Centroids
Method 3a: Use “Monte Carlo”
integration. Find the bounding
box of the surface and then choose
billions of points at random inside
the box; take the average of all
those points which fall inside the
surface.

Problem 3a: Testing for ‘inside’ is
time-consuming (although it can
be accelerated; try BSP trees.)
Also, this lacks precision. And,
frankly, finesse.

Method 3b: Decompose the
polyhedron into convex polyhedra,
then use method 2 to find the center
of each. Average the centers,
weighting each point by the volume
of its convex polyhedron.

Problem 3b: Convex decomposition
is solved, but it’s not trivial.
● Convex regions decompose rapidly

to tetrahedra.
● Nonconvex regions can be tricky:

tetrahedra may cross.

137

References
Gaussian Curvature
http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html
The Poincaré Formula
http://mathworld.wolfram.com/PoincareFormula.html
Convex Hulls
Tim Lambert’s Java demos: http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html
Wolfram: http://demonstrations.wolfram.com/ConvexHullAndDelaunayTriangulation/
Bounding volumes
http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/CG-Applets/Center/centercli.htm
M. Dyer and N. Megiddo, "Linear Programming in Low Dimensions." Ch. 38 in Handbook of Discrete and Computational
Geometry (Ed. J. E. Goodman and J. O'Rourke). Boca Raton, FL: CRC Press, pp. 669-710, 1997.
J. O'Rourke, Finding minimal enclosing boxes, Springer Netherlands, 1985
Centroids
B. Mirtich, “Fast and Accurate Computation of Polyhedral Mass Properties”, Journal of Graphics Tools v.1 n.2, 1996.
Kim et al, “Fast GPU Computation of the Mass Properties of a General Shape and its Application to Buoyancy
Simulation”, The Visual Computer v.2 n.9-11, 2006 (Adapts Mirtich’s method to use GPU hardware acceleration)

138

http://en.wikipedia.org/wiki/Gaussian_curvature
http://en.wikipedia.org/wiki/Gaussian_curvature
http://mathworld.wolfram.com/GaussianCurvature.html
http://mathworld.wolfram.com/GaussianCurvature.html
http://mathworld.wolfram.com/PoincareFormula.html
http://mathworld.wolfram.com/PoincareFormula.html
http://www.cse.unsw.edu.au/~lambert/java/3d/hull.html
http://demonstrations.wolfram.com/ConvexHullAndDelaunayTriangulation/
http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/CG-Applets/Center/centercli.htm
http://www.personal.kent.edu/~rmuhamma/Compgeometry/MyCG/CG-Applets/Center/centercli.htm
http://www.amazon.com/exec/obidos/ASIN/0849385245/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0849385245/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0849385245/ref=nosim/weisstein-20

Advanced Graphics

Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

OpenGL
and

Shaders

139

3D technologies today
Java

● Common, re-usable language; well-
designed

● Steadily increasing popularity in
industry

● Weak but evolving 3D support
C++

● Long-established language
● Long history with OpenGL
● Long history with DirectX
● Losing popularity in some fields

(finance, web) but still strong in
others (games, medical)

JavaScript
● WebGL is surprisingly popular

OpenGL
● Open source with many

implementations
● Well-designed, old, and still evolving
● Fairly cross-platform

DirectX/Direct3d (Microsoft)
● Microsoft™ only
● Dependable updates

Mantle (AMD)
● Targeted at game developers
● AMD-specific

Higher-level commercial libraries
● RenderMan
● AutoDesk / SoftImage

140

OpenGL
OpenGL is…
● Hardware-independent
● Operating system independent
● Vendor neutral

On many platforms
● Great support on Windows, Mac,

linux, etc
● Support for mobile devices with

OpenGL ES
● Android, iOS (but not

Windows Phone)
● Android Wear watches!

● Web support with WebGL

A state-based renderer
● many settings are configured

before passing in data; rendering
behavior is modified by existing
state

Accelerates common 3D graphics
operations
● Clipping (for primitives)
● Hidden-surface removal (Z-

buffering)
● Texturing, alpha blending

NURBS and other advanced
primitives (GLUT)

141

OpenGL in Java
● JOGL: “Java bindings

for OpenGL”
http://jogamp.org/jogl/
JOGL apps can be deployed as
applications or as applets, making it
suitable for educational web demos
and cross-platform applications.
● If the user has installed the latest

Java, of course.
● And if you jump through Oracle’

s authentication hoops.
● And… let’s be honest, 1998

called, it wants its applets back.

JOGL shaders in action.
Image from Wikipedia

● LWJGL: “Lightweight
Java Games Library”

http://www.lwjgl.org/
LWJGL is targeted at game
developers, so it’s got a really solid
threading model and good support for
new input methods like joysticks,
gaming mice,
and the Oculus
Rift.

142

The CPU (your processor and friend) delivers data to the GPU
(Graphical Processing Unit).
● The GPU takes in streams of vertices, colors, texture coordinates and

other data; constructs polygons and other primitives; then uses
shaders to draw the primitives to the screen pixel-by-pixel.

● The GPU processes the vertices according to the state set by the
CPU; for example, “every trio of vertices describes a triangle”.

This process is called the rendering pipeline. Implementing the rendering
pipeline is a joint effort between you and the GPU.

You’ll write shaders in the OpenGL shader language, GLSL.
You’ll write vertex and fragment shaders. (And maybe others.)

OpenGL architecture

143

The OpenGL rendering pipeline

An OpenGL application assembles
sets of primitives, transforms and
image data, which it passes to
OpenGL’s GLSL shaders.
● Vertex shaders process every vertex

in the primitives, computing info
such as position of each one.

● Fragment shaders compute the
color of every fragment of every
pixel covered by every primitive.

Primitives and image data

Alpha, stencil, depth tests
Framebuffer blending

Transform and lighting

Primitive assembly

Clipping

Texturing

Fog, antialiasing

Application

Vertex

Geometry

Fragment

Framebuffer

The OpenGL rendering pipeline
(simplified view)

144

http://jogamp.org/jogl/www/
http://jogamp.org/jogl/www/
http://www.lwjgl.org/
http://www.lwjgl.org/

Shader gallery I

Above: Demo of Microsoft’s XNA game platform
Right: Product demos by nvidia (top) and ATI (bottom)

145

What are we targeting?

OpenGL shaders give the
user control over each
vertex and each fragment
(each pixel or partial
pixel) interpolated
between vertices.
After vertices are processed, polygons are rasterized. During
rasterization, values like position, color, depth, and others are
interpolated across the polygon. The interpolated values are
passed to each pixel fragment.

146

Think parallel

Shaders are compiled from within your code
● They used to be written in assembler
● Today they’re written in high-level languages

They execute on the GPU
GPUs typically have multiple processing units
That means that multiple shaders execute in parallel
● We’re moving away from the purely-linear flow of early “C”

programming models

147

Shader example one – ambient lighting
#version 330

uniform mat4 mvp;

in vec4 vPosition;

void main() {
 gl_Position = mvp *
vPosition;

}

#version 330

out vec4 fragmentColor;

void main() {
 fragmentColor =
 vec4(0.2, 0.6, 0.8, 1);
}

// Vertex Shader // Fragment Shader

148

GLSL

Notice the C-style syntax
void main() { … }

The vertex shader uses two inputs, one four-element vec4
and one four-by-four mat4 matrix; and one standard
output, gl_Position.

The line
gl_Position = mvp * gl_Vertex;

applies our model-view-projection matrix to calculate the
correct vertex position in perspective coordinates.
This fragment shader implements the most basic ambient

lighting by setting its one output, col, to a fixed value.

149

GLSL

The language design in GLSL is strongly based on
ANSI C, with some C++ added.

● There is a preprocessor--#define, etc
● Basic types: int, float, bool

● No double-precision float
● Vectors and matrices are standard: vec2, mat2 = 2x2; vec3,

mat3 = 3x3; vec4, mat4 = 4x4
● Texture samplers: sampler1D, sampler2D, etc are used to

sample multidemensional textures
● New instances are built with constructors, a la C++
● Functions can be declared before they are defined, and

operator overloading is supported.

150

GLSL

Some differences from C/C++:
● No pointers, strings, chars; no unions, enums; no bytes, shorts, longs;

no unsigned. No switch() statements.
● There is no implicit casting (type promotion):

float foo = 1;
fails because you can’t implicitly cast int to float.

● Explicit type casts are done by constructor:
vec3 foo = vec3(1.0, 2.0, 3.0);
vec2 bar = vec2(foo); // Drops foo.z

Function parameters are labeled as in, out, or uniform.
● Functions are called by value-return, meaning that values are copied

into and out of parameters at the start and end of calls.

151

Program

OpenGL / GLSL API - setup
To install and use a shader in OpenGL:
1. Create one or more empty shader objects with

glCreateShader.
2. Load source code, in text, into the shader with

glShaderSource.
3. Compile the shader with

glCompileShader.
4. Create an empty program object with

glCreateProgram.
5. Bind your shaders to the program with

glAttachShader.
6. Link the program (ahh, the ghost of C!) with

glLinkProgram.
7. Activate your program with

glUseProgram.

Vertex
shader

Fragment
shader

Compiler

OpenGL

Linker

152

Shader gallery II

Above: Kevin Boulanger (PhD thesis,
“Real-Time Realistic Rendering of Nature
Scenes with Dynamic Lighting”, 2005)

Above: Ben Cloward (“Car paint shader”)

153

What will you have to write?

It’s up to you to implement perspective and lighting.
1. Pass geometry to the GPU
2. Implement perspective on the GPU
3. Calculate lighting on the GPU

154

1. OpenGL / GLSL API - variables

GLSL shaders use named parameters which can be looked up
from OpenGL.

uniform mat4 modelToScreen;

in vec4 vPosition;

...

The OpenGL API looks up the location integers of these
parameters and uses the location as an address:

int attributeId = glGetAttribLocation(program,
"vPosition");

glEnableVertexAttribArray(attributeId);

glVertexAttribPointer(attributeId, ...);

GLSL

OpenGL

155

Passing geometry to OpenGL

Vertex buffer objects store arrays of vertex data--
positional or descriptive. With a vertex buffer
object (“VBO”) you can compute all vertices at
once, pack them into a VBO, and pass them to
OpenGL en masse to let the GPU processes all
the vertices together.

To group different kinds of vertex data together,
you can serialize your buffers into a single
VBO, or you bind and attach them to a Vertex
Array Objects. Each vertex array object
(“VAO”) can contain multiple VBOs.

Although not required, VAOs help you to organize
and isolate the data in your VBOs.

Vertex Array
Object

Vertex Buffer
(positions)

Vertex Buffer
(colors)

Vertex Buffer
(normals)

Vertex Buffer
(texture info)

156

Vertex arrays contain vertex buffers

First, we allocate a vertex array:
 private void createAndBindVertexBuffer() {

 int vertexArrayId = glGenVertexArrays();

 glBindVertexArray(vertexArrayId);

 }

Then we fill attach a vertex buffer with vertex coordinates:
 private void addVertexBuffer(String name, FloatBuffer data) {

 int BufferId = glGenBuffers();

 glBindBuffer(GL_ARRAY_BUFFER, bufferId);

 glBufferData(GL_ARRAY_BUFFER, data, GL_STATIC_DRAW);

 int attributeId = glGetAttribLocation(program, name);

 glEnableVertexAttribArray(attributeId);

 glVertexAttribPointer(attributeId, 3, GL11.GL_FLOAT, false, 0, 0);

 }

157

Vertex buffers contain vertex data

In Java, vertex data is typically packed into a FloatBuffer:
static final float[][] CORNERS = {

 {-0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f, 0.8f}, { 0.8f, 0.8f,-0.8f}, {-0.8f, 0.8f,-0.8f},

 {-0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f, 0.8f}, { 0.8f,-0.8f,-0.8f}, {-0.8f,-0.8f,-0.8f},

};

static final int[] INDICES = { 0, 1, 2, 3, 0, 4, 5, 1, 5, 6, 2, 6, 7, 3, 7, 4 };

private void drawCube() {

 FloatBuffer vertices = Buffers.newDirectFloatBuffer(INDICES.length * 3);

 for (int index : INDICES) { vertices.put(CORNERS[index]); }

 vertices.rewind();

 fillCurrentVertexBuffer(“vPosition”, vertices);

 // ...

 glDrawArrays(GL_LINE_STRIP, 0, INDICES.length);

}

...and it’s boring, because we have no 3D.

158

Binding multiple buffers in a VAO

Need more info? We can pass more than just coordinate data--we can create as
many buffer objects as we want for different types of per-vertex data.

To bind two arrays of floats together, we build a vertex array object as before:
int vertexArrayId = glGenVertexArrays();

glBindVertexArray(vertexArrayId);

We bind a vertex buffer object for coordinate data, then another for normals:
addVertexBuffer(“vPosition”, vertices);

addVertexBuffer(“vNormal”, normals);

Later, to render, we’ll unbind the buffers and work only with the vertex array:
glBindBuffer(GL_ARRAY_BUFFER, 0);

glDrawArrays(GL_LINE_STRIP, 0, INDICES.length);

159

Memory management:
Lifespan of an OpenGL object

Most objects in OpenGL are created and deleted explicitly. Because these entities
live in the GPU, they’re outside the scope of Java’s garbage collection.
The typical creation and deletion of an OpenGL object look like this:

int createAndBindVBO() {

 int name = glGenBuffers();
 glBindBuffer(GL_ARRAY_BUFFER, name);
 return name;
}

// Work with your object

void deleteVBO(int vboName) {
 glDeleteBuffers(vboName);
}

160

2. Getting some perspective

To add 3D perspective to our flat model, we face three
challenges:

● Compute a 3D perspective matrix
● Pass it to OpenGL, and on to the GPU
● Apply it to each vertex

To do so we’re going to need to apply our perspective matrix
in the shader, which means we’ll need to build our own 4x4
perspective transform.

161

4x4 perspective matrix transform

Every OpenGL package provides utilities to build a
perspective matrix. You’ll usually find a method named
something like glGetFrustum() which will assemble a 4x4
grid of floats suitable for passing to OpenGL.

Or you can build your own:
α: Field of view, typically
50°

ar: Aspect ratio of width
over height

NearZ: Near clip plane

FarZ: Far clip plane

P =

162

Passing uniform data to GLSL

The method glGetUniformLocation() will look up the
location of a uniform parameter in a shader program.
(This is analogous to the attribute lookup seen earlier.)

 private void updateM4x4(String name, M4x4 T) {

 int uniform = glGetUniformLocation(program, name);

 if (uniform != -1) {

 glUniformMatrix4(uniform, false, T.asFloats());

 }

 }

163

Reading uniform data in GLSL

Next we need to modify our shader to transform our vertices
by our perspective matrix.

This shader takes a matrix and applies it to each vertex:

#version 330

uniform mat4 modelToScreen;

in vec4 vPosition;

void main() {

 gl_Position = modelToScreen * vPosition;

}

164

Multiple uniforms
#version 330

uniform mat4 modelToScreen;

uniform mat4 modelToWorld;

uniform mat3 normalToWorld;

in vec4 vPosition;

in vec3 vNormal;

void main() {

 vec3 p = (modelToWorld * vPosition).xyz;

 vec3 n = normalize(normalToWorld * vNormal);

 // ...

Use multiple uniforms for
different fields that are
constant throughout the
rendering pass, such as
transform matrices and
lighting coordinates.

165

3. Lighting and Shading

● Vertex shader outputs are interpolated across
fragments.

This makes the implementation of classic illumination models
like Gouraud shading very straightforward.

// ...

out vec4 color;

void main() {

 vec3 N = // ...

 vec3 L = // ...

 float diffuse = Kd * clamp(0, dot(N, L), 1);

 color = vec4(PURPLE * diffuse, 1.0);

}

// ...

in vec4 color;

out vec4 fragmentColor;

void main() {

 fragmentColor = color;

}

// Vertex Shader // Fragment Shader

Diffuse lighting
 d = kD(N•L)

expressed as a shader

166

Gouraud and Phong

Gouraud shading
● Compute color in vertex shader
● Let OpenGL interpolate color

across fragments
● Output interpolated color

Phong shading
● Compute normal in vertex shader
● Let OpenGL interpolate normal

across fragments
● Compute color separately for

each fragment

GLSL includes handy helper methods for illumination, such as a reflect() method that reflects one vector across another--
perfect for specular highlighting. For a few examples, check out the demo source code on github. 167

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 vec3 color = isOutsideFace ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

Procedural texturing in the
fragment shader

// ...

const vec3 CENTER = vec3(0, 0, 1);

// ...

void main() {

 bool isOutsideFace =

 (length(position - CENTER) > 1);

 bool isMouth =

 (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

// ...

const vec3 CENTER = vec3(0, 0, 1);

const vec3 LEFT_EYE = vec3(-0.2, 0.25, 0);

const vec3 RIGHT_EYE = vec3(0.2, 0.25, 0);

// ...

void main() {

 bool isOutsideFace = (length(position - CENTER) > 1);

 bool isEye = (length(position - LEFT_EYE) < 0.1)

 || (length(position - RIGHT_EYE) < 0.1);

 bool isMouth = (length(position - CENTER) < 0.75)

 && (position.y <= -0.1);

 vec3 color = (isMouth || isEye || isOutsideFace)

 ? BLACK : YELLOW;

 fragmentColor = vec4(color, 1.0);

}

(Code truncated for brevity--again, check out
the source on github for how I did the curved
mouth and oval eyes.)

168

Voronoi diagrams in the fragment
shader

For a limited set of generating
points, can compute the
Voronoi Diagram in the
fragment shader.

Simple version: “F2-F1”: find
the nearest two generating
points by iteration, render the
isolines where their forces = 0.

Better: With a two-pass solution,
can generate the isolines within
the cell as well (see link)

Iñigo Quilez (Pixar, Oculus)
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm

169

More advanced surface effects

● Specular highlighting
● Non-photorealistic

illumination
● Volumetric textures
● Bump-mapping
● Interactive surface effects
● Ray-casting in the shader
● Higher-order math in the

shader
● ...much, much more!

170

Recommended reading
Course source code on Github -- many sample shaders
(https://github.com/AlexBenton/AdvancedGraphics/tree/master/AdvGraph1415)

The OpenGL Programming Guide (2013), by Shreiner, Sellers, Kessenich and Licea-Kane
Some also favor The OpenGL Superbible for code samples and demos
There’s also an OpenGL-ES reference, same series

OpenGL Insights (2012), by Cozzi and Riccio
OpenGL Shading Language (2009), by Rost, Licea-Kane, Ginsburg et al
The Graphics Gems series from Glassner

ShaderToy.com, a web site by Inigo Quilez (Pixar) dedicated to amazing shader tricks and
raycast scenes

171
172

173 174

http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
http://www.iquilezles.org/www/articles/voronoilines/voronoilines.htm
https://github.com/AlexBenton/AdvancedGraphics/tree/master/AdvGraph1415
http://shadertoy.com

Advanced Graphics

A
le

x
B

en
to

n,
 U

ni
ve

rs
ity

 o
f C

am
br

id
ge

 –
 A

.B
en

to
n@

da
m

tp
.c

am
.a

c.
uk

Su
pp

or
te

d
in

 p
ar

t b
y

G
oo

gl
e

U
K

, L
td

“C
ornell Box” by Steven Parker, U

niversity of U
tah.

A
 tera-ray m

onte-carlo rendering of the C
ornell B

ox, generated in 2 C
PU

 years on an O
rigin 2000. The full im

age
contains 2048 x 2048 pixels w

ith over 100,000 prim
ary rays per pixel (317 x 317 jittered sam

ples). O
ver one

trillion rays w
ere traced in the generation of this im

age.

Ray Tracing
All the maths

175

Ray tracing

● A powerful alternative to polygon scan-conversion techniques
● An elegantly simple algorithm:

Given a set of 3D objects, shoot a ray from the eye through the
center of every pixel and see what it hits.

176

The algorithm
Select an eye point and a screen plane.
for (every pixel in the screen plane):

Find the ray from the eye through the pixel’s center.
for (each object in the scene):

if (the ray hits the object):
if (the intersection is the nearest (so far) to the eye):

Record the intersection point.
Record the color of the object at that point.

Set the screen plane pixel to the nearest recorded color.

177

Examples

All images are from the POV-Ray Hall of Fame: hof.povray.org

"Glasses" by Gilles Tran (2006)
“Villarceau Circles” by Tor Olav Kristensen (2004)

"Dancing Cube" by Friedrich A. Lohmueller (2003)"S
ch

er
k-

C
ol

lin
s

sc
ul

pt
ur

e"
 b

y
Tr

ev
or

 G
. Q

ua
yl

e
(2

00
8)

"POV Planet" by Casey Uhrig (2004)

178

The basic algorithm is
straightforward, but there's
much room for subtlety
● Refraction
● Reflection
● Shadows
● Anti-aliasing
● Blurred edges
● Depth-of-field effects
● …

typedef struct{double x,y,z;}vec;vec U,black,amb={.02,.02,.02};
struct sphere{vec cen,color;double rad,kd,ks,kt,kl,ir;}*s,*best
,sph[]={0.,6.,.5,1.,1.,1.,.9,.05,.2,.85,0.,1.7,-1.,8.,-.5,1.,.5
,.2,1.,.7,.3,0.,.05,1.2,1.,8.,-.5,.1,.8,.8,1.,.3,.7,0.,0.,1.2,3
.,-6.,15.,1.,.8,1.,7.,0.,0.,0.,.6,1.5,-3.,-3.,12.,.8,1.,1.,5.,0
.,0.,0.,.5,1.5,};int yx;double u,b,tmin,sqrt(),tan();double
vdot(vec A,vec B){return A.x*B.x+A.y*B.y+A.z*B.z;}vec vcomb(
double a,vec A,vec B){B.x+=a*A.x;B.y+=a*A.y;B.z+=a*A.z;return
B;}vec vunit(vec A){return vcomb(1./sqrt(vdot(A,A)),A,black);}
struct sphere*intersect(vec P,vec D){best=0;tmin=10000;s=sph+5;
while(s-->sph)b=vdot(D,U=vcomb(-1.,P,s->cen)),u=b*b-vdot(U,U)+
s->rad*s->rad,u=u>0?sqrt(u):10000,u=b-u>0.000001?b-u:b+u,tmin=
u>0.00001&&u<tmin?best=s,u:tmin;return best;}vec trace(int
level,vec P,vec D){double d,eta,e;vec N,color;struct sphere*s,
*l;if(!level--)return black;if(s=intersect(P,D));else return
amb;color=amb;eta=s->ir;d=-vdot(D,N=vunit(vcomb(-1.,P=vcomb(
tmin,D,P),s->cen)));if(d<0)N=vcomb(-1.,N,black),eta=1/eta,d=
-d;l=sph+5;while(l-->sph)if((e=l->kl*vdot(N,U=vunit(vcomb(-1.,P
,l->cen))))>0&&intersect(P,U)==l)color=vcomb(e,l->color,color);
U=s->color;color.x*=U.x;color.y*=U.y;color.z*=U.z;e=1-eta*eta*(
1-d*d);return vcomb(s->kt,e>0?trace(level,P,vcomb(eta,D,vcomb(
eta*d-sqrt(e),N,black))):black,vcomb(s->ks,trace(level,P,vcomb(
2*d,N,D)),vcomb(s->kd,color,vcomb(s->kl,U,black))));}main(){int
d=512;printf("%d %d\n",d,d);while(yx<d*d){U.x=yx%d-d/2;U.z=d/2-
yx++/d;U.y=d/2/tan(25/114.5915590261);U=vcomb(255.,trace(3,
black,vunit(U)),black);printf("%0.f %0.f %0.f\n",U.x,U.y,U.z);}
}/*minray!*/Paul Heckbert’s ‘minray’ ray tracer, which fit

on the back of his business card. (circa 1983)

It doesn’t take much code

179

The ray tracing time for a scene is a function of
(num rays cast) x
(num lights) x
(num objects in scene) x
(num reflective surfaces) x
(num transparent surfaces) x
(num shadow rays) x
(ray reflection depth) x …

Contrast this to polygon rasterization: time is a function of the
number of elements in the scene times the number of lights.

Image by nVidia

Running time

180

http://hof.povray.org/glasses.html
http://www.oyonale.com/
http://hof.povray.org/Villarceau_Circles-CSG.html
http://subcube.com/
http://hof.povray.org/bowbox11.html
http://www.f-lohmueller.de/index.htm
http://hof.povray.org/sherk-collins.html
http://barberofcivil.deviantart.com/
http://barberofcivil.deviantart.com/
http://hof.povray.org/pov-planet.html
http://www.c0d3m0nk3y.com/

Ambient light: kA

Diffuse light: kD(N•L)
Specular light: kS(R•E)n

 where R = L - 2(L•N)N

The total illumination at P is:
I(P) = kA+kD(N•L)+kS(R•E)n

summed over all lights L.

N

α

E

θ
L

R

P

Recall: illumination

181

Once you have the point P (the intersection of the ray with
the nearest object) you’ll compute how much each of the
lights in the scene illuminates P.
diffuse = 0
specular = 0
for (each light Li in the scene):

if (N•L) > 0:
[Optionally: if (a ray from P to Li can reach Li):]

diffuse += kD(N•L)
specular += kS(R•E)n

intensity at P = ambient + diffuse + specular

E

L1

P

L2

L3

N

Ray-traced illumination

182

A ray is defined parametrically as
P(t) = E + tD, t ≥ 0 (α)

where E is the ray’s origin (our eye position) and D is the
ray’s direction, a unit-length vector.

We expand this equation to three dimensions, x, y and z:
x(t) = xE + txD
y(t) = yE + tyD t ≥ 0 (β)
z(t) = zE + tzD

Hitting things with rays

183

Hitting things with rays:
Sphere

The unit sphere, centered at the origin, has the implicit equation
x2 + y2 + z2 = 1 (γ)

Substituting equation (β) into (γ) gives
(xE+txD)2 + (yE+tyD)2 + (zE+tzD)2 = 1

which expands to
t2(xD

2+yD
2+zD

2) + t(2xExD+2yEyD+2zEzD) + (xE
2+yE

2+zE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t:

...giving us two points of intersection.

184

Hitting things with rays:
Cylinder

The infinite unit cylinder, centered at the origin, has the implicit equation
x2 + y2 = 1 (δ)

Substituting equation (β) into (δ) gives
(xE+txD)2 + (yE+tyD)2 = 1

which expands to
t2(xD

2+yD
2) + t(2xExD+2yEyD) + (xE

2+yE
2-1) = 0

which is of the form
at2+bt+c=0

which can be solved for t as before, giving us two points of intersection.

The cylinder is infinite; there is no z term.

185

A planar polygon P can be defined as
Polygon P = {v1, …, vn}

which gives us the normal to P as
N= (vn-v1)×(v2-v1)

The equation for the plane of P is
N•(p - v1) = 0 (ζ)

Substituting equation (α) into (ζ) for p yields
N•(E+tD - v1)=0
xN(xE+txD-xv

1) + yN(yE+tyD-yv
1) + zN(zE+tzD-zv

1)=0

E

N

D

E+tD

Hitting things with rays:
Planes and polygons

186

Half-planes method
● Each edge defines an infinite half-plane

covering the polygon. If the point P lies
in all of the half-planes then it must be in
the polygon.

● For each edge e=vi→vi+1:
○ Rotate e by 90˚ CCW around N.

■ Do this quickly by crossing N with e.
○ If eR•(P-vi) < 0 then the point is outside e.

● Fastest known method.

O

N

D

v1 v2 v3

v…v…

vn

vi

vi+1

P

eeR

Point in convex polygon

187

Barycentric coordinates (tA,tB,tC) are a
coordinate system for describing the location of
a point P inside a triangle (A,B,C).
● You can think of (tA,tB,tC) as ‘masses’

placed at (A,B,C) respectively so that the
center of gravity of the triangle lies at P.

● (tA,tB,tC) are also proportional to the
subtriangle areas.
○ The area of a triangle is ½ the length of the cross

product of two of its sides.

A

B

C

tA
tC

tB

tA+tCP

A

B

C

t1
t3

tB

tA
tC

Q

Barycentric coordinates

188

Winding number
● The winding number of a point P in a

curve C is the number of times that the
curve wraps around the point.

● For a simple closed curve (as any well-
behaved polygon should be) this will be
zero if the point is outside the curve, non-
zero of it’s inside.

● The winding number is the sum of the
angles from vi to P to vi+1.
○ Caveat: This method is elegant but slow.

Figure from Eric Haines’
“Point in Polygon Strategies”,
Graphics Gems IV, 1994

Point in nonconvex polygon

189

Ray casting (1974)
● Odd number of crossings = inside
● Issues:

○ How to find a point that you know is inside?
○ What if the ray hits a vertex?
○ Best accelerated by working in 2D

■ You could transform all vertices such that the coordinate system of
the polygon has normal = Z axis…

■ Or, you could observe that crossings are invariant under scaling
transforms and just project along any axis by ignoring (for
example) the Z component.

● Validity proved by the Jordan curve theorem

Point in nonconvex polygon

190

“Any simple closed curve C divides the points of the
plane not on C into two distinct domains (with no
points in common) of which C is the common
boundary.”
● First stated (but proved incorrectly) by Camille Jordan (1838

-1922) in his Cours d'Analyse.
Sketch of proof : (For full proof see Courant & Robbins, 1941.)

● Show that any point in A can be joined to any other point in A
by a path which does not cross C, and likewise for B.

● Show that any path connecting a point in A to a point in B
must cross C.

A
B

C

The Jordan curve theorem

191

Note that the Jordan curve theorem can be extended to
a curve on a sphere, or anything which is topologically
equivalent to a sphere.
“Any simple closed curve on a sphere separates the

surface of the sphere into two distinct regions.”

A

B

The Jordan curve theorem on a sphere

192

Local coordinates, world coordinates

The cylinder “as it sees
itself”, in local coordinates

The cylinder “as the world sees it”, in world coordinates

5 0 0 0

0 2 0 0

0 0 5 0

0 0 0 1

* =

A 4x4 scale matrix, which
multiplies x and z by 5, y by 2.

A very common technique in graphics is to associate a
local-to-world transform, T, with a primitive.

193

Local coordinates, world coordinates:
Transforming the ray

x=0 x=10

World coordinates

x=-10 x=0

Local coordinates

E

T-1E

In order to test whether a ray hits a transformed object,
we need to describe the ray in the object’s local
coordinates. We transform the ray by the inverse of
the local to world matrix, T-1.

If the ray is defined by
P(t) = E + tD

then the ray in local coordinates is defined by
T-1(P(t)) = T-1(E) + t(T-13x3D)

where T-13x3 is the top left 3x3 submatrix of T-1.

194

Finding the normal

We often need to know N, the normal to the surface at the
point where a ray hits a primitive.

● If the ray R hits the primitive P at point X then N is…

We use the normal for color, reflection, refraction, shadow rays...

Primitive type Equation for N

Unit Sphere centered at the origin N = X

Infinite Unit Cylinder centered at the origin N = [xX, yX, 0]

Infinite Double Cone centered at the origin N = X × (X × [0, 0, zX])

Plane with normal n N = n

195

local

world

T

NL

NW

Converting the normal from local to world
coordinates

To find the world-coordinates normal N from the
local-coordinates NL, multiply NL by the transpose
of the inverse of the top left-hand 3x3 submatrix of
T:

N=((T3x3)
-1)T NL

● We want the top left 3x3 to discard translations
● For any rotation Q, (Q-1)T=Q
● Scaling is unaffected by transpose, and a scale of (a,b,c)

becomes (1/a,1/b,1/c) when inverted

196

Local coordinates, world coordinates
Summary

To compute the intersection of a ray R=E+tD with an object
transformed by local-to-world transform T:
1. Compute R’, the ray R in local coordinates, as

P’(t) = T-1(P(t)) = T-1(E) + t(T-13x3(D))

2. Perform your hit test in local coordinates.
3. Convert all hit points from local coordinates back to

world coordinates by multiplying them by T.
4. Convert all hit normals from local coordinates back to

world coordinates by multiplying them by ((T3x3)-1)T.

This will allow you to efficiently and quickly fire rays at arbitrarily-transformed
primitive objects.

197

Speed up ray-tracing with bounding
volumes
Bounding volumes help to quickly accelerate volumetric tests,
such as “does the ray hit the cow?”
● choose fast hit testing over accuracy
● ‘bboxes’ don’t have to be tight
Axis-aligned bounding boxes
● max and min of x/y/z.
Bounding spheres
● max of radius from some rough center
Bounding cylinders
● common in early FPS games

198

Bounding volumes in hierarchy

Hierarchies of bounding
volumes allow early discarding
of rays that won’t hit large
parts of the scene.
● Pro: Rays can skip

subsections of the hierarchy

● Con: Without spatial
coherence ordering the
objects in a volume you hit,
you’ll still have to hit-test
every object

199

Subdivision of space

Split space into cells and list
in each cell every object in
the scene that overlaps that
cell.
● Pro: The ray can skip empty

cells

● Con: Depending on cell size,
objects may overlap many
filled cells or you may waste
memory on many empty
cells

200

The BSP tree partitions the scene into
objects in front of, on, and behind a
tree of planes.
● When you fire a ray into the scene, you test

all near-side objects before testing far-side
objects.

Problems:
● choice of planes is not obvious
● computation is slow
● plane intersection tests are heavy on floating-

point math.

A

B

C

E

F
D

Popular acceleration structures:
BSP Trees

201

Popular acceleration structures:
kd-trees

The kd-tree is a simplification of the
BSP Tree data structure
● Space is recursively subdivided by axis-

aligned planes and points on either side of
each plane are separated in the tree.

● The kd-tree has O(n log n) insertion time
(but this is very optimizable by domain
knowledge) and O(n2/3) search time.

● kd-trees don’t suffer from the mathematical
slowdowns of BSPs because their planes are
always axis-aligned.

Image from Wikipedia, bless their hearts.

202

Popular acceleration structures:
Bounding Interval Hierarchies

The Bounding Interval Hierarchy
subdivides space around the volumes
of objects and shrinks each volume
to remove unused space.
● Think of this as a “best-fit” kd-tree
● Can be built dynamically as each ray is

fired into the scene

Image from Wächter and Keller’s paper,
Instant Ray Tracing: The Bounding Interval
Hierarchy, Eurographics (2006)

203

Using OpenGL to accelerate ray-tracing
To accelerate first raycast, don’t
raycast: use existing hardware.
● Use hardware rendering (eg OpenGL)

to write to an offscreen buffer.
● Set the color of each primitive equal to

a pointer to that primitive.
● Render your scene in gl with z-

buffering and no lighting.
● The ‘color’ value at each pixel in the

buffer is now a pointer to the primitive
under that pixel.

204

References
Jordan curves
R. Courant, H. Robbins, What is Mathematics?, Oxford University Press, 1941
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html

Intersection testing
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html

Ray tracing
Foley & van Dam, Computer Graphics (1995)
Jon Genetti and Dan Gordon, Ray Tracing With Adaptive Supersampling in Object Space,
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html (1993)
Zack Waters, “Realistic Raytracing”, http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

205
206

207 208

209 210

http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://cgm.cs.mcgill.ca/~godfried/teaching/cg-projects/97/Octavian/compgeom.html
http://www.realtimerendering.com/intersections.html
http://www.realtimerendering.com/intersections.html
http://tog.acm.org/editors/erich/ptinpoly/
http://tog.acm.org/editors/erich/ptinpoly/
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://mathworld.wolfram.com/BarycentricCoordinates.html
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html
http://www.cs.uaf.edu/~genetti/Research/Papers/GI93/GI.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/realistic_raytracing.html

Ray Tracing:
Image Quality and Texture

Alex Benton, University of Cambridge –

A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd 211

Shadows

To simulate shadows in ray tracing, fire a ray
from P towards each light Li. If the ray hits
another object before the light, then discard Li
in the sum.
● This is a boolean removal,

so it will give hard-edged
shadows.

● Hard-edged shadows
suggest a pinpoint light
source.

212

D

O

P

L
1

Softer shadows

Shadows in nature are not sharp because light sources are not
infinitely small.
● Also because light scatters, etc.

For lights with volume, fire many rays, covering the cross-
section of your illuminated space.
Illumination is scaled by (the total number of
rays that aren’t blocked) divided by (the total
number of rays fired).
● This is an example of Monte-Carlo integration:

a coarse simulation of an integral over a space
by randomly sampling it with many rays.

● The more rays fired, the smoother the result.

213

R
ay

s p
er

 sh
ad

ow
 te

st
: 2

0

Light radius: 1

All images anti-aliased with 4x supersampling.
Distance to light in all images: 20 units

R
ay

s p
er

 sh
ad

ow
 te

st
: 1

00

Light radius: 5

Softer shadows

214

E

P

θ

L

S

Raytraced spotlights

D

To create a spotlight shining along axis S, you
can multiply the (diffuse+specular) term by
(max(L•S,0))m.
● Raising m will tighten the spotlight,

but leave the edges soft.
● If you’d prefer a hard-edged spotlight

of uniform internal intensity, you can
use a conditional, e.g.
((L•S > cos(15˚)) ? 1 : 0).

215

E

P

L
1

Q

Reflection

Reflection rays are calculated as:
R = 2(-D•N)N+D

● Finding the reflected color is a
recursive raycast.

● Reflection has scene-dependant
performance impact.

● If you’re using the GPU, GLSL supports
reflect() as a built-in function.

D

216

num bounces=1

num bounces=0 num bounces=2

num bounces=3 217

E D
DT

Transparency

To add transparency, generate and trace a new
transparency ray with ET=P, DT=D.

To support this in software, make color a 1x4 vector
where the fourth component, ‘alpha’,
determines the weight of the recursed
transparency ray.

218

1 Or sound waves or other waves

Refraction

The angle of incidence of a ray of light where it
strikes a surface is the acute angle between the
ray and the surface normal.
The refractive index of a material is a measure
of how much the speed of light1 is reduced
inside the material.
● The refractive index of air is about 1.003.
● The refractive index of water is about 1.33.

219

Snell’s Law:

“The ratio of the sines of the angles of incidence of a ray of
light at the interface between two materials is equal to the
inverse ratio of the refractive indices of the materials is equal
to the ratio of the speeds of light in the materials.”

Historical note: this formula has been attributed to Willebrord
Snell (1591-1626) and René Descartes (1596-1650) but first
discovery goes to Ibn Sahl (940-1000) of Baghdad.

Refraction

220

Refraction in ray tracing

Using Snell’s Law and the angle of
incidence of the incoming ray, we
can calculate the angle from the
negative normal to the outbound
ray.

E
D

P

P’

N
θ1

θ2

221

Refraction in ray tracing

What if the arcsin parameter is > 1?
● Remember, arcsin is defined in

[-1,1].
● We call this the angle of total

internal reflection: light is trapped
completely inside the surface.

E
D

P

P’

N
θ1

θ2

Total internal
reflection

222

Aliasing
aliasing
/ˈeɪlɪəsɪŋ/
noun: aliasing
1. PHYSICS / TELECOMMUNICATIONS

the misidentification of a signal frequency,
introducing distortion or error.

"high-frequency sounds are prone to aliasing"
2. COMPUTING

the distortion of a reproduced image so that
curved or inclined lines appear
inappropriately jagged, caused by the
mapping of a number of points to the same
pixel.

223

Aliasing

-

=

224

Anti-aliasing

Fundamentally, the problem with aliasing is that we’re
sampling an infinitely continuous function (the color of
the scene) with a finite, discrete function (the pixels of the
image).

Image source: www.svi.nl

One solution to this is
super-sampling. If we fire
multiple rays through each
pixel, we can average the
colors computed for every
ray together to a single
blended color.

225

Anti-aliasing

Single point
● Fire a single ray through the pixel’s center

Super-sampling
● Fire multiple rays through the pixel and

average the result
● Regular grid, random, jittered, Poisson

disks

Adaptive super-sampling
● Fire a few rays through the pixel, check

the variance of the resulting values, if
similar enough then stop else fire more
rays

226

Types of super-sampling

Regular grid
● Divide the pixel into a number of sub-pixels and

fire a ray through the center of each
● This can still lead to noticeable aliasing unless a

very high resolution of sub-pixel grid is used

Random
● Fire N rays at random points in the pixel
● Replaces aliasing artifacts with noise artifacts

● But the human eye is much less sensitive to
noise than to aliasing

● Requires special treatment for animation

227

Types of super-sampling

Poisson disk
● Fire N rays at random points in

the pixel, with the proviso that
no two rays shall pass through
the pixel closer than ε to one
another

● For N rays this produces a
better looking image than pure
random sampling

● However, can be very hard to
implement correctly / quickly

228

http://www.svi.nl/

Types of super-sampling

Jittered
● Divide the pixel into N sub-pixels and fire one

ray at a random point in each sub-pixel
● Approximates the Poisson disk behavior
● Better than pure random sampling, easier (and

significantly faster) to implement than Poisson

229

Applications of super-sampling

● Anti-aliasing
● Soft shadows
● Depth-of-field camera effects

(fixed focal depth, finite aperture)

Image credit:
http://en.wikipedia.org/wiki/Ray_tracing_(graphics) 230

Anisotropic shading

Anisotropic shading occurs in nature when light reflects off a surface differently
in one direction from another, as a function of the surface itself. The specular
component is modified by the direction of the light.

http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/ 231

Texture mapping

As observed in last year’s course, real-life objects rarely
consist of perfectly smooth, uniformly colored surfaces.

Texture mapping is the art of applying an image to a
surface, like a decal. Coordinates on the surface are
mapped to coordinates in the texture.

232

Texture mapping

0, 0

0, 1 1, 1

1, 0

We’ll need to query the color of the
texture at the point in 3D space where
the ray hits our surface. This is
typically done by mapping

 (3D point in local coordinates)
 → U,V coordinates bounded [0-1, 0-1]
 → Texture coordinates bounded by

[image width, image height]

233

UV mapping the primitives

UV mapping of a unit cube
if |x| == 1:
 u = (z + 1) / 2
 v = (y + 1) / 2
elif |y| == 1:
 u = (x + 1) / 2
 v = (z + 1) / 2
else:
 u = (x + 1) / 2
 v = (y + 1) / 2

UV mapping of a torus of
major radius R

 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 + atan2(y, ((x2 + z2)½ - R) / 2π

UV mapping of a unit sphere
 u = 0.5 + atan2(z, x) / 2π
 v = 0.5 - asin(y) / π

UV mapping is easy for primitives but can be very difficult for arbitrary shapes.

234

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://en.wikipedia.org/wiki/Ray_tracing_(graphics)
http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/
http://www.blenderguru.com/videos/introduction-to-anisotropic-shading/

Texture mapping

One constraint on using images for texture is that images
have a finite resolution, and a virtual (ray-traced) camera
can get quite near to the surface of an object.

This can lead to a
single image pixel
covering multiple ray-
traced pixels (or vice-
versa), leading to
blurry or aliased pixels
in your texture.

235

Procedural texture

Instead of relying on discrete
pixels, you can get infinitely
more precise results with
procedurally generated textures.

Procedural textures compute the
color directly from the U,V
coordinate without an image
lookup.

For example, here’s the code for
the torus’ brick pattern (right):

 tx = (int) 10 * u

 ty = (int) 10 * v
 oddity = (tx & 0x01) == (ty & 0x01)
 edge = ((10 * u - tx < 0.1) && oddity) || (10 * v - ty < 0.1)
 return edge ? WHITE : RED

Confession: I cheated slightly and
multiplied the u coordinate by 4 to repeat
the brick texture four times around the
torus.

236

Procedural volumetric texture

By mapping 3D coordinates to colors, we can create
volumetric texture. The input to the texture is local model
coordinates; the output is color and surface characteristics.

For example, to produce wood-grain texture, trees grow
rings, with darker wood from earlier in the year and
lighter wood from later in the year.

● Choose shades of early and late wood
● f(P) = (XP

2+ZP
2) mod 1

● color(P) = earlyWood +
f(P) * (lateWood - earlyWood)

f(P)=0 f(P)=1 237

Adding realism

The teapot on the previous slide doesn’t look very wooden,
because it’s perfectly uniform. One way to make the
surface look more natural is to add a randomized noise
field to f(P):

f(P) = (XP
2+ZP

2 + noise(P)) mod 1

where noise(P) is a function that maps 3D coordinates in
space to scalar values chosen at random.

For natural-looking results, use
Perlin noise, which interpolates
smoothly between noise values.

238

Perlin noise

Perlin noise (invented by Ken Perlin) is a method for
generating noise which has some useful traits:

● It is a band-limited repeatable pseudorandom
function (in the words of its author, Ken Perlin)

● It is bounded within a range close [-1, 1]
● It varies continuously, without discontinuity
● It has regions of relative stability
● It can be initialized with random values, extended

arbitrarily in space, yet cached deterministically
● Perlin’s talk: http://www.noisemachine.com/talk1/

Non-coherent noise (left) and Perlin noise (right)
Image credit: Matt Zucker

Ken PerlinMatt Zucker Matt Zucker Matt Zucker 239

Perlin noise 1

Perlin noise caches ‘seed’ random values on a grid at
integer intervals. You’ll look up noise values at
arbitrary points in the plane, and they’ll be
determined by the four nearest seed randoms on
the grid.

Given point (x, y), let (s, t) = (floor(x), floor(y)).

For each grid vertex in
{(s, t), (s+1, t), (s+1, t+1), (s, t+1)}
choose and cache a random vector of length one.

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

(s, t)

(s, t + 1) (s + 1, t + 1)

(s + 1, t)

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html240

http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Perlin noise 2

For each of the four corners, take the dot product of the
random seed vector with the vector from that corner to
(x, y). This gives you a unique scalar value per corner.

● As (x, y) moves across this cell of the grid, the values
of the dot products will change smoothly, with no
discontinuity.

● As (x, y) approaches a grid point, the contribution from
that point will approach zero.

● The values of LL, LR, UL, UR are clamped to a range
close to [-1, 1].

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

LL

UL UR

LR

(x, y)

241

Perlin noise 3

Now we take a weighted average of LL, LR, UL, UR.
Perlin noise uses a weighted averaging function chosen
such that values close to zero and one are moved closer
to zero and one, called the ease curve:
S(t) = 3t2-2t3

We interpolate along one axis first:
L(x, y) = LL + S(x - floor(x))(LR-LL)
U(x, y) = UL + S(x - floor(x))(UR-UL)

Then we interpolate again to merge
 the two upper and lower functions:
noise(x, y) =
 L(x, y) + S(y - floor(y))(U(x, y) - L(x, y))

Voila!

LL

UL UR

LR

(x, y)

These slides borrow heavily from Mark Zucker’s excellent page on Perlin noise at
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

The ‘ease curve’

242

Tuning noise

Texture frequency
1 → 3

Noise frequency
1 → 3

Noise amplitude
1 → 3 243

Normal mapping

Normal mapping applies the principles of texture mapping
to the surface normal instead of surface color.

In a sense, the ray tracer
computes a trompe-l’oeuil
image on the fly and
‘paints’ the surface with
more detail than is actually
present in the geometry.

The specular and diffuse shading of the
surface varies with the normals in a
dent on the surface.

If we duplicate the normals, we don’t
have to duplicate the dent.

244

Normal mapping

245

References
Ray tracing
Peter Shirley, Steve Marschner. Fundamentals of Computer Graphics. Taylor & Francis,
21 Jul 2009
Hughes, Van Dam et al. Computer Graphics: Principles and Practice. Addison Wesley,
3rd edition (10 July 2013)

Anisotropic shading
Greg Ward, “Measuring and Modeling Anisotropic Reflection”, Computer Graphics
(SIGGRAPH ’92 Proceedings), pp. 265–272, July 1992 (http://radsite.lbl.
gov/radiance/papers/sg92/paper.html)
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal

Perlin noise
http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

246

http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://www.youtube.com/watch?v=H4Xll-x2vL0
http://radsite.lbl.gov/radiance/papers/sg92/paper.html
http://radsite.lbl.gov/radiance/papers/sg92/paper.html
http://radsite.lbl.gov/radiance/papers/sg92/paper.html
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal
https://en.wikibooks.org/wiki/GLSL_Programming/Unity/Brushed_Metal
http://www.noisemachine.com/talk1/
http://www.noisemachine.com/talk1/
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html
http://webstaff.itn.liu.se/~stegu/TNM022-2005/perlinnoiselinks/perlin-noise-math-faq.html

Advanced Scenes and Global Illumination
Alex Benton, University of Cambridge – A.Benton@damtp.cam.ac.uk

Supported in part by Google UK, Ltd

Advanced Graphics

247

Constructive Solid Geometry

Constructive Solid
Geometry (CSG) builds
complicated forms out of
simple primitives.

These primitives are
combined with basic
boolean operations: add,
subtract, intersect.

CSG figure by Neil Dodgson

248

Constructive Solid Geometry

CSG models are easy to ray-trace but difficult to
polygonalize
● Issues include choosing polygon boundaries at edges;

converting adequately from pure smooth primitives to
discrete (flat) faces; handling ‘infinitely thin’ sheet
surfaces; and others.

● This is an ongoing research topic.
CSG models are well-suited to machine milling, automated
manufacture, etc
● Great for 3D printers!

249

Constructive Solid Geometry

Three operations:
1. Union 2. Intersection 3. Difference

250

Constructive Solid Geometry

CSG surfaces can be described by a binary
tree, where each leaf node is a primitive and
each non-leaf node is a boolean operation.

(What would the not
of a surface look like?)

Figure from Wyvill (1995) part two, p. 4

251

For each node of the binary tree:
● Fire ray r at A and B.
● List in t-order all points

where r enters of leaves A or B.
● You can think of each intersection as

a quad of booleans--
(wasInA, isInA, wasInB, isInB)

● Discard from the list all intersections which don’t
matter to the current boolean operation.

● Pass the list up to the parent node and recurse.

Constructive Solid Geometry

252

Ray-tracing CSG models

Each boolean operation can
be modeled as a state
machine.
For each operation, retain
those intersections that
transition into or out of
the critical state(s).
● Union:

{In A | In B | In A and B}

● Intersection: {In A and B}
● Difference: {In A}

In A and
B

In A In B

Not in A
or B

Enter B

Leave B

Enter B

Leave B

Enter A

Leave A

Leave A

Enter A

253

Example: Difference (A-B)
A B

t1
t2, t3

t4

 A-B Was In A Is In A Was In B Is In B

 t1 No Yes No No

 t2 Yes Yes No Yes

 t3 Yes No Yes Yes

 t4 No No Yes No

difference =
((wasInA != isInA) &&
 (!isInB)&&(!wasInB))
||
((wasInB != isInB) &&
 (wasInA || isInA))

Ray-tracing CSG models

254

Difference Intersection

CSG in action

255

What’s wrong with raytracing?
● Soft shadows are expensive
● Shadows of transparent objects require

further coding or hacks
● Lighting off reflective objects follows

different shadow rules from normal lighting
● Hard to implement diffuse reflection (color

bleeding, such as in the Cornell Box—
notice how the sides of the inner cubes are
shaded red and green.)

● Fundamentally, the ambient term is a hack
and the diffuse term is only one step in
what should be a recursive, self-reinforcing
series.

The Cornell Box is a test for rendering
Software, developed at Cornell University
in 1984 by Don Greenberg. An actual box
is built and photographed; an identical
scene is then rendered in software and the
two images are compared.

256

Radiosity
● Radiosity is an illumination method

which simulates the global
dispersion and reflection of diffuse
light.
● First developed for describing spectral

heat transfer (1950s)
● Adapted to graphics in the 1980s at

Cornell University
● Radiosity is a finite-element

approach to global illumination: it
breaks the scene into many small
elements (‘patches’) and calculates
the energy transfer between them.

Images from Cornell University’s graphics group
http://www.graphics.cornell.edu/online/research/ 257

Radiosity—algorithm
● Surfaces in the scene are divided into form factors (also called

patches), small subsections of each polygon or object.
● For every pair of form factors A, B, compute a view factor describing

how much energy from patch A reaches patch B.
● The further apart two patches are in space or orientation, the less light

they shed on each other, giving lower view factors.
● Calculate the lighting of all directly-lit patches.
● Bounce the light from all lit patches to all those they light, carrying

more light to patches with higher relative view factors. Repeating
this step will distribute the total light across the scene, producing a
total illumination model.

258

http://www.graphics.cornell.edu/online/research/
http://www.graphics.cornell.edu/online/research/

Radiosity—mathematical support
The ‘radiosity’ of a single patch is the amount of energy leaving
the patch per discrete time interval.
This energy is the total light being emitted directly from the patch
combined with the total light being reflected by the patch:

where…
Bi is the radiosity of patch i;
Bj is the cumulative radiosity of all other patches (j≠i)
Ei is the emitted energy of the patch
Ri is the reflectivity of the patch
Fij is the view factor of energy from patch i to patch j.

259

Radiosity—form factors
● Finding form factors can be done

procedurally or dynamically
● Can subdivide every surface into small

patches of similar size
● Can dynamically subdivide wherever the 1st

derivative of calculated intensity rises above
some threshold.

● Computing cost for a general radiosity
solution goes up as the square of the number
of patches, so try to keep patches down.
● Subdividing a large flat white wall could be

a waste.
● Patches should ideally closely align with

lines of shadow.

260

Radiosity—implementation
(A) Simple patch triangulation
(B) Adaptive patch generation: the floor

and walls of the room are dynamically
subdivided to produce more patches
where shadow detail is higher.

Images from “Automatic
generation of node spacing
function”, IBM (1998)
http://www.trl.ibm.com/
projects/meshing/nsp/
nspE.htm

(A) (B)

261

Radiosity—view factors
One equation for the view factor between
patches i, j is:

…where θi is the angle between the normal of
patch i and the line to patch j, r is the distance
and V(i,j) is the visibility from i to j (0 for
occluded, 1 for clear line of sight.) High view factor

Low view factor

θi

θj

262

Radiosity—calculating visibility
● Calculating V(i,j) can be slow.
● One method is the hemicube, in which each form factor is encased in a

half-cube. The scene is then ‘rendered’ from the point of view of the
patch, through the walls of the hemicube; V(i,j) is computed for each
patch based on which patches it can see (and at what percentage) in its
hemicube.

● A purer method, but more computationally expensive, uses
hemispheres.

Note: This method can be accelerated
using modern graphics hardware to
render the scene. The scene is
‘rendered’ with flat lighting, setting the
‘color’ of each object to be a pointer to
the object in memory.

263

Radiosity gallery

Teapot (wikipedia)

Image from
GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation:
a Synthesis of Ray Tracing and Radiosity Methods,
John R. Wallace, Michael F. Cohen and Donald P. Greenberg
(Cornell University, 1987)

264

http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm
http://www.trl.ibm.com/projects/meshing/nsp/nspE.htm

Shadows, refraction and caustics
● Problem: shadow ray strikes

transparent, refractive object.
● Refracted shadow ray will

now miss the light.
● This destroys the validity of

the boolean shadow test.
● Problem: light passing through

a refractive object will
sometimes form caustics (right),
artifacts where the envelope of
a collection of rays falling on
the surface is bright enough to
be visible.

This is a photo of a real pepper-shaker.
Note the caustics to the left of the shaker, in and
outside of its shadow.
Photo credit: Jan Zankowski

265

Shadows, refraction and caustics

● Solutions for shadows of transparent
objects:
● Backwards ray tracing (Arvo)

● Very computationally heavy
● Improved by stencil mapping (Shenya et al)

● Shadow attenuation (Pierce)
● Low refraction, no caustics

● More general solution:
● Photon mapping (Jensen)→

Image from http://graphics.ucsd.edu/~henrik/
Generated with photon mapping 266

Photon mapping
Photon mapping is the process
of emitting photons into a
scene and tracing their paths
probabilistically to build a
photon map, a data structure
which describes the
illumination of the scene
independently of its geometry.

This data is then combined
with ray tracing to compute the
global illumination of the
scene.

Image by Henrik Jensen (2000)

267

Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:
1. Photon scattering

A. Photons are fired from each light source, scattered in
randomly-chosen directions. The number of photons per
light is a function of its surface area and brightness.

B. Photons fire through the scene (re-use that raytracer,
folks.) Where they strike a surface they are either
absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction
and energy of the photon in the photon map. The photon
map data structure must support fast insertion and fast
nearest-neighbor lookup; a kd-tree1 is often used.

Image by Zack Waters

268

Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:
2. Rendering

A. Ray trace the scene from the point of view of the camera.
B. For each first contact point P use the ray tracer for

specular but compute diffuse from the photon map and do
away with ambient completely.

C. Compute radiant illumination by summing the
contribution along the eye ray of all photons within a
sphere of radius r of P.

D. Caustics can be calculated directly here from the photon
map. For speed, the caustic map is usually distinct from
the radiance map.

Image by Zack Waters

269

Photon mapping is probabilistic
This method is a great example of
Monte Carlo integration, in which a
difficult integral (the lighting
equation) is simulated by randomly
sampling values from within the
integral’s domain until enough
samples average out to about the
right answer.
● This means that you’re going to be

firing millions of photons. Your
data structure is going to have to be
very space-efficient.

http://www.okino.com/conv/imp_jt.htm

270

http://graphics.ucsd.edu/~henrik/
http://www.okino.com/conv/imp_jt.htm
http://www.okino.com/conv/imp_jt.htm

Photon mapping is probabilistic
● Initial photon direction is random. Constrained by light

shape, but random.
● What exactly happens each time a photon hits a solid also

has a random component:
● Based on the diffuse reflectance, specular reflectance and

transparency of the surface, compute probabilities pd, ps and pt where (pd+ps+pt)≤1. This gives a probability map:

● Choose a random value p є [0,1]. Where p falls in the
probability map of the surface determines whether the photon is
reflected, refracted or absorbed.

0 1pd ps pt
This surface would
have minimal
specular highlight.

271

Photon mapping gallery

http://www.pbrt.org/gallery.php
http://web.cs.wpi.
edu/~emmanuel/courses/cs563/write_ups/zackw/phot
on_mapping/PhotonMapping.html

http://graphics.ucsd.edu/~henrik/images/global.html

272

References
Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)

Radiosity
● nVidia: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
● Cornell: http://www.graphics.cornell.edu/online/research/
● Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, “A Ray Tracing Algorithm for Progressive

Radiosity.” In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315–324.
● Buss, “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter XI),

Cambridge University Press (2003)

Photon mapping
● Henrik Jenson, “Global Illumination using Photon Maps”: http://graphics.ucsd.edu/~henrik/
● Zack Waters, “Photon Mapping”: http://web.cs.wpi.

edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

273

http://www.pbrt.org/gallery.php
http://www.pbrt.org/gallery.php
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://graphics.ucsd.edu/~henrik/images/global.html
http://graphics.ucsd.edu/~henrik/images/global.html
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
http://www.graphics.cornell.edu/online/research/
http://graphics.ucsd.edu/~henrik/
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

